
Kafka is a data streaming platform, just like Amazon Kinesis it is able to take in message and store
messages durably for consumers to read in those messages.

It is very scalable because of the three different components, producers, brokers, and consumers.
There is also built-in data replication to be a durable platform.

Messages or a record in Kafka is how you would be sending the data from the producer to the
broker. The record consists of key and body. The key is used to identify which partition of a topic to
write the record into.

A collection of message or record is referred to as a batch.

A Kafka topic can be think of as a container that you can deposit your message / record into in the
Kafka ecosystem and be read on a later time. Topics themselves are identified by a unique name,
and the messages are sent to and read from a specific topic.

Within a topic, it can have one or more partition, further division of a topic. When a topic is created
the controller (head of the cluster) will determine how many partition a topic will have.

So a topic can be think of as a container to deposit your message into, then partition is more
smaller boxes within the container to further organize your message.

Records will be stored into a topic based on the provided name, then based on the provided key
which will be hashed in order to get the actual partition the record will be placed into.

For example, if we have a topic name activity-log with three partition named activity-log-1,
activity-log-2, activity-log-3.

Then when a source system publishes messages to the topic it will be stored into either of those
partition.

Apache Kafka Introduction

What is Kafka?

Core concepts

Kafka topic

Kafka partition

Example



A Kafka broker is the server that handles the request from both Producer, Consumer, and Metadata
queries. They are also responsible for keeping the data replicated within a cluster.

A Kafka cluster just have multiple Kafka broker in it handling requests to keep Kafka platform
running, that is it.

Zookeper is another set of servers that is responsible for metadata maintenance. They are able to
direct producer the brokers to contact if there are multiple brokers. 

The producer are processes that publishes records into Kafka topic via broker.

A consumer are processes that pulls records off a Kafka topic via broker.

In Kafka replication is implemented at the partition level. The redundant partition in a topic is
called a replica. Each partition (that actually gets message published into) in a topic usually have
one or more replicas associated with them.

Within a partition, partition and replica partition, there is the leader which handles all the read-
write operations for the specific partition. Then the replicas will be replicating the leader partition.

If the leader fails, then one of the replicas will be promoted as the leader to take over.

A bootstrap-server is a url for one of the Kafka brokers that allows you to fetch initial metadata
about your Kafka clusters. Which topics are available and the number of partitions within each of
the topics, which partition is a leader.

Producer or consumer will use these metadata to produce and consume from the appropriate topic
/ partition / contact the right broker.

There can be multiple bootstrap-server for failover purposes just in case one of them goes down.

Kafka broker and cluster

Zookeeper

Producer

Consumer

How are replication done?

What is a bootstrap-server

Schema registry



Kafka at its core only transfer data in bytes, the data stored in topics are in raw bytes format, when
you publish or consume from topic it is read in as raw bytes format. The consumer needs to know
about the type of data the producer is sending in order to deserialize it later on (Get it back as an
Object, how to transfer complex objects like a Linked list across network - Use serialization sent the
object as array of bytes). Producer serializes the data using library like Avro in order to store it into
raw bytes. 

This is where Schema registry comes into play, it is an application that lives outside of Kafka
cluster and handles distribution of schemas to the producer and consumer by storing the schema
(layout of the object how to deserialize) in its local cache.

The producer before sending the data to Kafka, first check with registry to see if the schema is
available, if not sent it and registry will cache it. Then it will serialize the data with the schema and
send it to Kafka with a schema ID.

When the consumer gets the message, it will first get the schema from registry with the ID, and
then deserialize it according to the schema.

The schema basically tells the consumer HOW to deserialize the bytes, what bytes constitute the
first field, second bytes, and so on.

 

 

 

Revision #1
Created 19 April 2023 18:56:21 by Tamarine
Updated 19 April 2023 19:58:23 by Tamarine


