
Classic Solutions
Architecture Discussion

Solution architecture
How do you use all these components to make them all work together into one architecture.

We will study solution architecture and how to come up with them via case studies.

WhatsTheTime.com
Let people know what time it is. We don't need a database because every EC2 instances know the
time.

We want to start small and downtime is acceptable, then scale vertically and horizontally with no
downtime.

Initial solution
We start with a public t2.micro EC2 instance, and user will ask what is the time, it just spit back the
current time. We attache an elastic IP address so the IP address of the EC2 instance is static.

Now users starts to come into our app, now our t2.micro can't keep up with the load, maybe we
should scale it vertically and make it into m5 instances. We have to stop our app, and change our
EC2 instance size to be m5. We have downtime when upgrading our app. This isn't great.

Now even more people come in, we scale it horizontally to three EC2 instances. But users needs to
know about the IP address of those horizontally scaled EC2 instances.

To fix this, we can leverage Route 53. Set a A record to point to those three EC2 instances. Now
users can access the time API just through a common endpoint, api.whatisthetime.com. With TTL of
1 hour.

Now if we are going to make an upgrade and take down one of the instances that the Route 53
points to, it is going to make some users suffer because the TTL is 1 hour. They won't be routed to
other EC2 instances that are still up! They will be unhappy!

How do we remediate this?



We make our EC2 instances private, and front it with elastic load balancer with health checks.
Route 53 need to have an Alias record that point to the ELB resource. Now it is working properly,
no downtime for nay user because of health checks.

Now manually launching groups is tedious, we can have an auto scaling group to scale on-demand.
We set min, max, and desire count of the instances.

But what happens if the ELB that we fronted with is in a availability zone that just had an
earthquake? Our application will still go down! To solve this, we can deploy our ELB in multi-AZ, say
AZ 1-3. Our auto scaling will group will also launch instances in different AZ. Now it is highly
available great!

Now after optimizing the architecture, you will switch to thinking about cost saving. You can
reserve capacity for cost saving! Reserving minimum capacity of our auto scaling group we can
save lots of money!

Now this is good architecture. We are considering 5 pillars for a well architect ed applications: Cost
(reserved instances for optimized cost + ASG), performance (Vertical scaling, ELB, adapt
performance over time), reliability (Route 53, multi-AZ deployment), security (Security group to link
ELB to EC2), operational excellence.

MyClothes.com (stateful app)
Now let's try to make a stateful app. This e-com web app will have a shopping cart and we need
some place to store all these user informations. We want to keep our web app as stateless as
possible, and user should not lose their shopping cart when they refresh their pages.

Details such as address should be in the database.

We will have the same set up from the Whatsthetime app with ELB, ASG, Multi-AZ, and Route 53.
Now whenever the user add to chart, the page refreshes and they lose their data because they are
talking to different EC2 instances from before they are redirected. How do we remediate this? We
introduce stickiness so that user will be always talking to the same EC2 instances.

But if the EC2 instance is terminated data will still be lost, so stickiness isn't a complete solution.

We introduce server session, we set a cookie called session_id, and use ElastiCache to store user
session. So that as long as the user have the same session_id, it will retrieve the same data for that
user.

Now we can also introduce Amazon RDS to store user data in a database. But now there is too
many reads what do we do? We add read replicas to the RDS, we can have up to 5 read replicas.
We can also then add on top of it lazy read with ElastiCache, but this pattern require code change
to your repository, however, it is more efficient since frequently accessed data will be in
ElastiCache and doesn't need to hit RDS constantly.



Now how do we make it Multi AZ? In order to survive disasters. Route 53 we don't have to worry
about it since it is highly available already. ELB make it multi-AZ, ASG make it multi-AZ,
ElasticCache also have multi-AZ if you use Redis, RDS you can do multi-AZ to have a standby
instance if the master goes down.

For security group, we restrict traffic only from the resources that it is fronted with.

MyWordPress.com (stateful app)
We want to make a scalable WordPress website, and they should have the capability to upload and
access picture upload.

RDS layer with multi-AZ for handling user data. Or we can have Aurora MySQL to scale better than
RDS.

Storing images we will do it with EBS initially. Image will have to go through ELB to EC2 then EC2
will store it into EBS volume. Problem is when we start scaling horizontally, what if image is stored
into one of the EBS volume but not the other? Then user won't be able to access the image that
they have uploaded to one of the EBS volume.

To solve this we will use EFS instead of EBS, it scales automatically as you use more storage, and
the storage is shared between all many EC2 instances.

Instantiating applications quickly
For EC2 instances, we can use a golden AMI (or also called custom AMI), which contains pre-
installed software and packages that is needed to run your applications. All your other EC2
instances can be created from this AMI at a much faster rate.

You can also use user data for dynamic configurations.

Elastic Beanstalk will combine both golden AMI and user data to quickly spin up your applications

For RDS databases restoring it from a snapshot is much faster.

EBS volumes also restoring it from a snapshot will be much faster.

Elastic Beanstalk
So far the architecture is ELB with EC2 in multi-AZ, then we have RDS and ElastiCache for caching
frequently read data and session data.

Most of the application follow these type of structure, and if we are going to deploy many
application then it is going to be a pain to deploy these manually for every application!



Most of the application follow these same architecture, ALB + ASG mainly, so Elastic Beanstalk
provide this one way of deploying the code without you having to worry about provisioning all
these resources yourself. All you have to do is write the code.

Elastic Beanstalk is going to use all of the component that we have seen before, it is a managed
services so it will automatically handle capacity provisioning, load balancing, scaling, application
health monitoring. We still have full control over the configuration but it puts less burden on the
developer.

Beanstalk itself is free, but the resources that it manages will not be! Will be priced accordingly.

Beanstalk support lots of platforms! Python, Java, you name it, even if your platform isn't on it by
default, you can just create it yourself.

Components
Application: The collection of Elastic Beanstalk components

Application version:  An iteration of your application code

Environment: Collection of AWS resources running application version (running only one version at
a time)

Tier: Web server environment tier vs worker environment tier, you can make multiple
environment

So the process is you create application, upload it with a version number, and you launch into an
environment, then you can upload updated version and relaunch it with the updated version.

Web server tier: The traditional architecture that we know, EC2 instances is managed by auto
scaling group and is fronted with ELB, it will be deployed under a DNS name from ELB.

Worker environment: No clients accessing EC2 instances directly, the EC2 instance will be
consuming SQS messages that comes from SQS queues. You push messages to the SQS queue to
kick start the process.

Deployment modes
Single instances: Good for development, an EC2 instance with Elastic IP

High availability with load balancer: This is good for production, this is the traditional architecture
in AWS that we see already. EC2 instances managed by ASG in multi-AZ, fronted by ELB.

Revision #2
Created 15 February 2023 20:43:39 by Tamarine
Updated 17 February 2023 01:42:11 by Tamarine


