
Disaster recovery is about preparing for those disaster that can happen to the data center.

RPO: Recovery point objective. How often do you run backups. How far can you go back just before
the data loss. "How much data did you lose just before the disaster". It will be measure in terms of
time, the lower the better, that means that you basically lose little to no data.

RTO: Recovery time object. How long will it take you recover from the disaster. How much
downtime after the disaster. Again also in time the lower the better.

All these strategies will have different RPO and RTO and different cost.

High RPO!

You make regular backups basically to the cloud, then when disaster strikes then you can just
restore from the snapshot for RDS, or EBS.

This is cheap and the only cost is storing the backups, and high RPO and high RTO. Depending on
how often do you make the backups.

A small version of the app is always running in the cloud. The useful and critical application.

Faster backup and restore since the critical system are already up. Then you just have to spin up
the other non-core systems on the fly.

Lower RPO and RTO, but a little bit more expensive.

A full replication of the system but is scaled down. When disaster strikes then you scale it up.

Way faster RTO, and lower RPO but you are spending more now.

Disaster Recovery and Migration

Disaster recovery

Disaster recovery strategies

Backup and restore

Pilot light

Warm standby

Multi Site / Hot Site Approach



You have basically a full replication not scaled down running concurrently on the cloud
environment ready to go.

Very fast RTO and low RPO, his is the most expensive.

Deploy everything to the cloud to multiple regions, when one region is down just failover to the
other.

Backup do EBS snapshots, RDS automated backups. Push those snapshots and backup to S3.

High availability, use Route 53 to automatic migrate DNS from region to region.

RDS multi-AZ

Database migration service. You can quickly and securely migrate on-premise database to AWS.
During migration the source database still remain available.

Supports lots of engine. Oracle to Oracle. Posgres to Postgres. Even Microsoft SQL server to Aurora.

Continuous data replication. You have to create an EC2 instance to do the migration and
continuous replication if you need. The EC2 instances will basically pull data from the database and
migrate it to the target.

Sources: On-premises and EC2 instances databases, even S3

Target: On-premise and EC2 instance databases. RDS, Redshift, DynamoDB, S3, Kinesis Data
Stream

You can transform source to target they all work.

Convert database schema from one engine to another, if the engine aren't the same you will need
to use this tool. If the database engine are the same then you don't need it.

All AWS Multi Region

Recovery tips

DMS

Source and targets

Schema conversion tools (SCT)

Continuous replication



To set up continuous replication and not just a one time migration. You would still need SCT if the
data engine aren't the same. Then you need the EC2 instance to do full migration and chance data
capture (CDC) for continuous replication if there are new changes to the database.

1. DB snapshot from RDS then restore it as Aurora. But there are downtime if you are taking
the snapshot

2. Create an Aurora read replica from your RDS. Then do replication. Then promote the
Aurora as own DB cluster. No downtime but there are cost

1. Percona XtraBackup to backup your on-premise MySQL to S3, then restore Aurora from S3
2. Mysqldump and pipe it to Aurora, but this is slower since it doesn't use S3

Use DMS to do continuous replication.

1. DB snapshot and then restore it as PostgresSQL Aurora, since Aurora support Postgres
and MySQL

2. The second option create read replica, then do replication and promote the Aurora as own
DB cluster, same with MySQL.

1. Create backup and put it in S3, then import it using Aurora extension

VM Import / export: You can move existing VM to AWS or export them back to on-premise

AWS Application Discovery Service: Discover your on-premise server layout and plan migration

AWS Database Migration Service: Help migrate on-premise database to the cloud.

AWS Server migration service: Help migrate on-premise server to cloud incrementally.

AWS Application Migration Service: Migrate existing websites, applications, servers, and VM, and
data to the cloud. Life and shift solution that simplify migration to the cloud. Convert your existing
data center and replicate it on the cloud basically.

RDS and Aurora Migration
RDS MySQL to Aurora

External MySQL to Aurora

If both database are up and running

RDS PostgresSQL to Aurora

External Postgres to Aurora

Other on-premise services



Centrally manage and automate backup across AWS service. No need to create custom script and
manual processes.

Supports lots of services for making backups. Support cross-region and cross-account backups for
disaster recovery.

On-demand and scheduled backups. Define frequently of how often the backup is done.

Data is backed up in S3.

You can apply write once read many. The backup cannot be deleted.

200 TB of data with 100 Mbps internet. 

1. Over the internet / Site-to-site VPN: Immediate setup but very long time of transferring, so
this isn't going to work

2. Direct connect (1 Gbps): A month to set up DX, then still lots of time to do it.
3. Snowball: Order snowballs, then one week to load data and sent it back.
4. On-going replication: Site-to-site. DataSync. DMS, or DX.

Have VMware virtual machines on the cloud basically if you use VMware on-premise.

Sub-services under VMware are available and you have access to AWS cloud services like S3, EC2,
Direct Connect.

AWS Backup

Transferring large amount of data to AWS

VMware Cloud on AWS

Revision #3
Created 28 February 2023 01:49:09 by Tamarine
Updated 1 March 2023 00:42:30 by Tamarine


