
Bash Cheatsheet
Vim Cheatsheet

Cheat Sheet



To execute multi-line command in bash script simple put a \ after breaking up your commands.
There should be no white spaces after the backslash, else it will fail!

Every single line should be followed by a \ until you finished typing the command.

In Bash the if-statements follows the structure:

As you can see every if chain will end with fi keyword. Every if/elif condition statement will be
followed by the then keyword.

If you want to put the then on the same line with the if keyword, and because if, then, else, elif, fi
are all shell keyword they cannot be used on the same-line. To fix this you have to put a ; to end
the previous statement and the keyword before you can use another keyword. As an example:

Bash Cheatsheet
Multi-line Command

curl https://cat.png \#no spaces after!

	-o here.txt \

If-Statements

if CONDITION

then

	COMMAND

elif CONDITION

then

	COMMAND

else

	COMMAND

fi

if CONDITION; then

	COMMAND

fi

Conditions



Okay, now we know the basic of if-statements how do I put it into use by filling in the conditions?
There are couple different ways of writing conditions, here I will only go over the most commonly
used ones.

1.

Using this method you can test whether the files exists, and compare values. It has it's own set of
syntax for example to check if a certain file named "foo.txt" exists then you would type test -f 
"foo.txt"  and it will evaluate to true if only the file "foo.txt" exists.

For comparing values we cannot use the symbols directly, ==, <, >, <=, or >=. Instead we have
to use their flag equivalent below:

Compartor Flag Equivalent

== -eq

> -gt

< -lt

>= -ge

<= -le

or ||

and &&

not !

You can also append ! to negate the expression to check the opposite.

Use = to do string equality comparison.

2.

# The first way is using test

if test <expressions>; then

	COMMAND

fi

# The second way is using [] square brackets

if [ some test ]; then

	COMMAND

fi



The square bracket is like test and essentially all the operators that you can use with test you can
also use in the square brackets.

There must be a space between the test and the left bracket, [ and the right bracket, ], otherwise
Bash cannot understand it!

3.

The double square brackets is like an upgrade of the normal square bracket. It comes from ksh.

With the double square brackets you can use some of the comparison operators without using the
flags. So we are allowed to use >, =, and <, but they are used in lexicographical comparison!
However, <= and >= still requires the flag equivalent.

4.

Bash runs the command you have provided and then will run the if-statement according to the exit
code. It will run it if the exit code is 0, and will not run it if it is not 0.

To declare a variable in Bash follow the following syntax structure:

You must not use any spaces between the variable name and the value! Otherwise, it will error out
because you are not following Bash syntax!

To store the output of a command into a variable follow the following syntax structure

# The third way is using [[]] double square brackets

if [[ some test ]]; then

	COMMAND

fi

if command;then

	COMMAND

fi

Remember in programming, 0 represent the command carried out successfully, and
anything not 0 represent some sort of errors occurred.

Variables & Arrays

VAR_NAME=VALUE

Command Output -> Variable



This will do command substitution, it will execute the command and then substitute the return
value as the value.

To prevent the output of the command from being processed for word splitting (i.e. the \n loses
their meaning in a text file), you would quote the command substitution "$(COMMAND ARGS)"  to
prevent word splitting.

From the GNU shell specification: "The shell scans the results of parameter expansion,
command substitution, and arithmetic expansion that did not occur within double
quotes for word splitting."

To declare a array follow the following syntax structure:

The array can contain different types, either an integer, float, or even strings.

You can refers to each individual elements using ${var_name[index]} , the index are 1-based indices.

To refer to the entire array for say the usage of running a command with arguments from the
entire array you can use $array_name[@]  to refer to all of the elements from the array.

Syntax What it Does

arr=() Create an empty array

VAR_NAME=$(COMMAND ARGS)

OR

VAR_NAME=`COMMAND ARGS`

Arrays

arr=(1 2 3 4 5 6 7)

OR

arr=(

	"hello"

    "world"

    "hehe"

    "xd"

)

Array Operation Summary Table



arr=(1 2 3) Initialize an array

${arr[2]} Get the third element

${arr[@]} Get all of the elements

${!arr[@]} Get the indices of all the elements

${#arr[@]} Get the length of the array

arr[0]=3 Overwrite the first element with value 0

arr+=(4)  or arr+=($another_variable) Add a new value to the array

The let  built-in command allows you to do arithmetic operations on variables. It can be used to do
a simple increment operations. Examples below:

Command What it Does

let a=11 Same as a=11

let a=a+5  or let "a = a + 5" Both set a  to be 5 more of itself

let "a <<= 3" Left-shifts a  3 places

let "a += 4"  or the other math operators Same as let "a /= 4"

let a++  or let "a++" C-style operators works as well!

Some simple operations like increment cannot be carried out by the Bash directly so you would use
let  command to actually do the increments! You do not need to refer to the variable names using
dollar signs.

You can replace all the operators described above in between (( ))  to have the same effect,
minus the need for using double quotations. Addition, subtraction, division, multiplication, bit shifts,
post/pre increment all works.

To do for loops there are couples of ways:

1. Looping through array elements

Let and (( )) Construct

For Loops



2. Looping through array indices

3. Looping through range, the end is included

The keyword break  and continue  are also available for use in the for loop just like how it would
work in any other languages.

While loops have the basic structure as follows:

There are two ways of writing a bash function

for ele in ${array[@]}; do

	echo $ele

done

for i in ${!array[@]}; do

	echo $i

done

for value in {start..end..step}

do

	COMMAND

done

While Loops

while [ some test ]

do

	COMMANDS

done

Bash Functions

function_name() {

	echo "This is the body of the bash function"

}

function another_bash_function() {

	echo "This is another function!"

}



With either way you would be invoking the function by just calling it like it is a command. For
example, to invoke the first function you would simply type function_name  and then provide any
argument that you would like to pass into the function. The arguments passed into the function can
be accessed using $1, $2, $3, ...  just like in bash script. $#, $@  works as well with respective to
the argument passed to the function, not the script!



Ughhh how do I escape Vim?

This is how you would be moving your cursors around in the file

They can be preceeded by a number to tell how many lines to say go down or go to the left.

For example: Pressing 10 and then h will move your cursors to the left 10 characters.

Command Description

x Delete the character at the cursor

i, a, A Insert character at the cursor, insert character after the
cursor (append), and append to the end of the line
respectively.

<ESC> Put you into normal mode if you're in insertion mode,
replace mode, or other modes

w, e, b Use it to traverse skip through each word to the start of
each other, or to the end of each word. Use  b  to go back
a word.

Vim Cheatsheet
Mandatory get out of Vim joke

# <ESC> :wq, write the changes to the file and quit

# <ESC> :q, quit if there is no changes

# <ESC> :q!, quit without saving

Basics

             ^

             k              Hint:  The h key is at the left and moves left.

       < h       l >               The l key is at the right and moves right.

             j                     The j key looks like a down arrow.

             v



dw, de, d$, dd

 
Delete from cursor up to the next word
Delete from cursor up to the end of the word only
Delete from cursor to the end of the line
Delete the entire line regardless where your cursor is

operator [number] motion Operator such as  d  can be specified together with a
number to tell it how many times to repeat the motion.
Motion tells which text to operate on, w, e, $

u, U, CTRL-R Undo previous action
Undo all the changes on the current line
Redo, (undo the undo)

p Paste what was deleted with the  d  operator

rx, R Replace the current character with x, where x can be any
character
Enter in replace mode where every character you type will
be replacing the one that's on the cursor.

CTRL-G Display current line number

G, <NUMBER> G Move to the end of the file
Move to the line number specified

gg Move to the first line of the file

/, ?
n, N
CTRL-o, CTRL-i

Used for searching patters forward and backward
respectively
Used to find the next occurrence of the pattern in the
direction specified,  N  is used to find the previous
occurrence.
CTRL-o, CTRL-i  take you back to the older/newer position

so you don't have to scroll back to where you are
respectively

% Used to find the matching ( ), [ ], { }



:!command Will execute external command, like  ls

:w FILENAME Write the current Vim file to another file called FILENAME

v Visual mode, let you see what you are highlighting and
then you can apply other operator such as deleting the
highlighted text.

:r FILENAME Read in the specified file and then paste it below the
cursor
Can be used together with command to paste the output
of the command. :r !ls

Command Description

o, O To insert a empty line below and above the current line

y Copies text,  yy  copies the entire line. Can be used
together with  v  to highlight a good section of the file and
then paste it with  p

CTRL-W CTRL-W To jump to another opened window

:terminal Open up a terminal within Vim this is pretty cool

Some settings in Vim can be changed for example if you want to show line numbers you can do 
:set number  to toggle on displaying the line number on the side.

You can toggle it off by prepending a  no  to the original toggle, for example :set nonumber  will
disable displaying the line number on the side.

Some more command

Set command


