
Bash Cheatsheet

Multi-line Command
To execute multi-line command in bash script simple put a \ after breaking up your commands.
There should be no white spaces after the backslash, else it will fail!

Every single line should be followed by a \ until you finished typing the command.

If-Statements
In Bash the if-statements follows the structure:

As you can see every if chain will end with fi keyword. Every if/elif condition statement will be
followed by the then keyword.

If you want to put the then on the same line with the if keyword, and because if, then, else, elif, fi
are all shell keyword they cannot be used on the same-line. To fix this you have to put a ; to end
the previous statement and the keyword before you can use another keyword. As an example:

curl https://cat.png \#no spaces after!
	-o here.txt \

if CONDITION
then
	COMMAND
elif CONDITION
then
	COMMAND
else
	COMMAND
fi

if CONDITION; then
	COMMAND
fi

Conditions
Okay, now we know the basic of if-statements how do I put it into use by filling in the conditions?
There are couple different ways of writing conditions, here I will only go over the most commonly
used ones.

1.

Using this method you can test whether the files exists, and compare values. It has it's own set of
syntax for example to check if a certain file named "foo.txt" exists then you would type test -f
"foo.txt" and it will evaluate to true if only the file "foo.txt" exists.

For comparing values we cannot use the symbols directly, ==, <, >, <=, or >=. Instead we have
to use their flag equivalent below:

Compartor Flag Equivalent

== -eq

> -gt

< -lt

>= -ge

<= -le

or ||

and &&

not !

You can also append ! to negate the expression to check the opposite.

Use = to do string equality comparison.

2.

The first way is using test
if test <expressions>; then
	COMMAND
fi

The second way is using [] square brackets
if [some test]; then

The square bracket is like test and essentially all the operators that you can use with test you can
also use in the square brackets.

There must be a space between the test and the left bracket, [and the right bracket,], otherwise
Bash cannot understand it!

3.

The double square brackets is like an upgrade of the normal square bracket. It comes from ksh.

With the double square brackets you can use some of the comparison operators without using the
flags. So we are allowed to use >, =, and <, but they are used in lexicographical comparison!
However, <= and >= still requires the flag equivalent.

4.

Bash runs the command you have provided and then will run the if-statement according to the exit
code. It will run it if the exit code is 0, and will not run it if it is not 0.

Variables & Arrays
To declare a variable in Bash follow the following syntax structure:

You must not use any spaces between the variable name and the value! Otherwise, it will error out
because you are not following Bash syntax!

	COMMAND
fi

The third way is using [[]] double square brackets
if [[some test]]; then
	COMMAND
fi

if command;then
	COMMAND
fi

Remember in programming, 0 represent the command carried out successfully, and
anything not 0 represent some sort of errors occurred.

VAR_NAME=VALUE

Command Output -> Variable
To store the output of a command into a variable follow the following syntax structure

This will do command substitution, it will execute the command and then substitute the return
value as the value.

To prevent the output of the command from being processed for word splitting (i.e. the \n loses
their meaning in a text file), you would quote the command substitution "$(COMMAND ARGS)" to
prevent word splitting.

From the GNU shell specification: "The shell scans the results of parameter expansion,
command substitution, and arithmetic expansion that did not occur within double
quotes for word splitting."

Arrays
To declare a array follow the following syntax structure:

The array can contain different types, either an integer, float, or even strings.

You can refers to each individual elements using ${var_name[index]} , the index are 1-based indices.

To refer to the entire array for say the usage of running a command with arguments from the
entire array you can use $array_name[@] to refer to all of the elements from the array.

VAR_NAME=$(COMMAND ARGS)

OR

VAR_NAME=`COMMAND ARGS`

arr=(1 2 3 4 5 6 7)

OR

arr=(
	"hello"
 "world"
 "hehe"
 "xd"
)

Array Operation Summary Table
Syntax What it Does

arr=() Create an empty array

arr=(1 2 3) Initialize an array

${arr[2]} Get the third element

${arr[@]} Get all of the elements

${!arr[@]} Get the indices of all the elements

${#arr[@]} Get the length of the array

arr[0]=3 Overwrite the first element with value 0

arr+=(4) or arr+=($another_variable) Add a new value to the array

Let and (()) Construct
The let built-in command allows you to do arithmetic operations on variables. It can be used to do
a simple increment operations. Examples below:

Command What it Does

let a=11 Same as a=11

let a=a+5 or let "a = a + 5" Both set a to be 5 more of itself

let "a <<= 3" Left-shifts a 3 places

let "a += 4" or the other math operators Same as let "a /= 4"

let a++ or let "a++" C-style operators works as well!

Some simple operations like increment cannot be carried out by the Bash directly so you would use
let command to actually do the increments! You do not need to refer to the variable names using
dollar signs.

You can replace all the operators described above in between (()) to have the same effect, minus
the need for using double quotations. Addition, subtraction, division, multiplication, bit shifts,
post/pre increment all works.

For Loops

To do for loops there are couples of ways:

1. Looping through array elements

2. Looping through array indices

3. Looping through range, the end is included

The keyword break and continue are also available for use in the for loop just like how it would
work in any other languages.

While Loops
While loops have the basic structure as follows:

Bash Functions
There are two ways of writing a bash function

for ele in ${array[@]}; do
	echo $ele
done

for i in ${!array[@]}; do
	echo $i
done

for value in {start..end..step}
do
	COMMAND
done

while [some test]
do
	COMMANDS
done

function_name() {
	echo "This is the body of the bash function"
}

With either way you would be invoking the function by just calling it like it is a command. For
example, to invoke the first function you would simply type function_name and then provide any
argument that you would like to pass into the function. The arguments passed into the function can
be accessed using $1, $2, $3, ... just like in bash script. $#, $@ works as well with respective to the
argument passed to the function, not the script!

function another_bash_function() {
	echo "This is another function!"
}

Revision #12
Created 11 November 2022 04:14:13 by Tamarine
Updated 7 May 2023 17:08:49 by Tamarine

