
C Notes
Object reference vs pointer
Little and Big Endian

Object reference vs pointer
Pointer variable
Let's start from the beginning, computer memory location are layered out in addresses, each
particular location have an address and holds some kind of content. The address is a numerical
number usually in hex for easier expression.

To help programmer, instead of using the hex address remembering them, variable are created as
a named location. So instead of using the numerical address, you use a name that is attached to
that particular location.

As you can see the variable sum, age, average, ptrSum are all named location in replacement of using
the direct address.

Integer type variable holds integer value.

https://wiki.tamarine.me/uploads/images/gallery/2023-01/image.png

Double type variable holds float value.

Pointer type variable holds memory address value. It is just like any other variable that
holds a value.

Pointer
You declare them by using the * symbol like so:

When they are declared they usually have garbage value initially, thatis why you need to initialize
them with a value before they can be used. You initialize them using the address-of operator (&).

The address-of operator operates on a variable, and returns the address of the variable. Say
number is an integer variable, &number returns the address of the variable number .

Dereferencing
To follow the pointer and actually retrieve the value from the pointer you will use the dereferencing
operator (*).

type * ptr;

int number = 88;
int * pNumber = &number;

int number = 99;
int *pNumber = &number;

int anotherNumber = *pNumber; // puts 99 into anotherNumber

https://wiki.tamarine.me/uploads/images/gallery/2023-01/Zzmimage.png

Reference variables
C++ added reference variables or reference for short. A reference is an alias, or another name to
an existing variable. They are mainly used for pass-by-reference, if the reference variable is passed
into the function, the function works on the original copy instead of a copy of the parameter.
Changes to the parameter inside the function are reflected outside of the function.

To create a reference in C++:

How does references work?
References are implemented as a pointer!

The reference variables stores the address of the variable, much like a pointer, however there are
key differences!

When you use pointer vs when you use reference: For pointer you have to explicitly
dereference the pointer in order to get the value back. On the other hand, referencing
and deferencing are done implicitly for you, so you don't need to dereference a
reference variable for assignment, just treat it as a variable and assign to it!

In addition, references cannot be NULL and they must be initialized when they are declared, no
separate declaration and assignment like pointer.

There is pointer arithmetic but there is no reference arithmetic.

Short summary
Pointer

type &newName = existingName;

https://wiki.tamarine.me/uploads/images/gallery/2023-01/K3Wimage.png

You think of pointer as just another type like int, char, float, it takes up a constant amount
of spaces in memory, and you can assign values to them.
The value you assign to them is a memory address. You can interpret the memory
address pointed by the pointer using the dereferencing operator (*).
A pointer can be assigned to point a NULL value
A pointer can be changed to point to any variable of the same type.
You can do pointer arithmetic, but you cannot with references.

References
A reference must be initialized when it is declared
It cannot be NULL
You can use it by simply using the name. Reference is implemented via pointer, a
constant pointer with automatic indirection, the compiler will apply the dereferencing for
you automatically.
Think of references as an alias to existing object in memory.

Little and Big Endian
Endianness
Little and big endian are two ways of storing multibyte data-types into memory. For single byte
data-types like a char, it doesn't matter what the endian because it is only one byte. Duh.

Let's assume that an integer is 4 bytes in the 32 bit system that we are working with in C.

Let's have the hexadecimal value 0x01234567 this is 32 bit remember every 2 hexadecimal digit
is one byte, there is 4 pair of the hexadecimal digits hence 32 bits.

Now we will be storing it into memory and these are the two ways.

Big Endian
So we have our hexadecimal 0x01234567 when we are just writing the numbers the most
significant bit is always on the left hand side, i.e. 01 in hex or 0000 0001 is the most significant
byte.

If the machine is big endian then it will store each byte into memory as the way it is written:

01 into memory address 0x100
23 into memory address 0x101
45 into memory address 0x102
67 into memory address 0x103

In this example, the memory address increases.

https://wiki.tamarinne.me/uploads/images/gallery/2023-05/image.png

Little Endian
With little endian we will be storing the least significant byte into the address and going backward:

67 into memory address 0x100
45 into memory address 0x101
23 into memory address 0x102
01 into memory address 0x103

Example program to show endian

It uses a char pointer to go through the integer and show the endian of the machine.

If it is big endian it will print out 01 23 45 67

If it is little endian it will print out 67 45 23 01

Do I need to care about endian?
Most of the time no, the compiler or the interpreter will usually take care of the endianness.

But when you work with network programming, i.e. sending data over a network socket, you will
have to be cognisance of the endian by say converting the integer that you are sending over the
wire into network bytes order (big endian), then converted back to host byte order (whether it is
big endian or little endian).

void show_mem_rep(char *start, int n)
{
 int i;
 for (i = 0; i < n; i++)
 printf(" %.2x", start[i]);
 printf("\n");
}

/*Main function to call above function for 0x01234567*/
int main()
{
 int i = 0x01234567;
 show_mem_rep((char *)&i, sizeof(i));
 getchar();
 return 0;
}

