
Virtualization vs Containers
RUN, CMD, ENTRYPOINT Directives
exec form vs shell form
exec form vs shell form PT.2
docker stop vs docker kill
Why does my container immediately exits?
dumb-init for script

Docker

Virtualization is the process where a software called hypervisor (which sits on top of your native
operating system) allows other operating systems to run on top of your native operating system.

The hypervisor creates virtual machines which is an emulation of physical computer, it creates
virtual resources like CPU, RAM, disk, and networking giving the virtual machine the allusion that it
is on its own independent computer. However, in reality it is actually managed by the hypervisor.

So with virtualization, it will recreate the underlying hardware for every virtual machines that you
spin up. Which might be inefficient but it is good isolation as each of the operating system won't
influence each other.

In addition, with virtual machines you are archiving isolation of machines. Each virtual
machine are isolated from each other and you are able to run a full running operating
system.

Underlying resources for each virtual machine are accessed by hypervisor.

Virtual machine you have flexibility on hardware, you can give say 5 virtual machines all 8 cores,
despite only having 8 cores on your host machine.

Container is a lighter-weight more faster way of handling virtualization. They do not use a
hypervisor but instead they use a container engine to run multiple container on the same kernel.

Container do not recreate the physical hardware and they package all the dependencies and
software, and even the operating system itself that is required to execute the contained software
application. This basically allows you to run your application anywhere, regardless of the physical
hardware that's underneath.

Containers allows micro service architectures and they are kind of built for it.

With containers you are archiving isolation of processes. Each container will be run as a
process and they are isolated from each other. Normal process that we run will able to
inspect other processes! That is possible!!! However, with container when they run as a
process, it will apparent to themselves that they don't see other processes being run,
all the software and code that's necessary are packaged into them already.

Virtualization vs Containers
Virtualization and virtual machines

Containers

Container's resources are accessed by kernel features.

Containers have portability, it has all the code that's necessary to run the container, you can take
the docker image and run it pretty much anyway as long as you built it for ARM or x86 their
corresponding architecture.

The RUN directive is executed in a new layer, what does it mean? It is used to install packages and
applications on top of an existing image layer and create a new layer on top of it. Docker images
are used to build new ones and the RUN directive allows you to add more software / security
updates on top of the based image, giving you the ability to customize it.

You have to understand that Docker images work in layers. You have the base images that are
provided by Docker such as Ubuntu, Linux, or Windows images. They by default don't have much
software installed, that's where you can use RUN to install other software to customize it to your
need! By running RUN it will add a new layer on top of the existing layer with the software you
want to install.

This RUN command basically installs vim on top of your existing image which might not have it by
default.

There can be multiple RUN command in your Dockerfile because it is used to customize the image
to your need.

The CMD directive is similar to ENTRYPOINT both are used to run a command after your container
has started. (Okay I got this environment setup already, with all the code and dependencies, what
do you actually want me to run?).

Using the CMD command you set a default command. The default command is run if you
run the container without specifying some command. In the case where you do specify
command then the CMD line is ignored because the command user specifies override
the default command.

There are three ways of using CMD directive

RUN, CMD, ENTRYPOINT
Directives
RUN

RUN [“apt-get”, “install”, “vim”]

CMD

There can only be one CMD instruction in a Dockerfile, if you have more than one only the
last CMD take effect.

1. CMD <command> parameter1, parameter2... (Shell form)
2. CMD ["executable command", "parameter1", "parameter2"] (Executable form)
3. CMD ["parameter1", "parameter2"]

The third way is used to set additional default parameter when you are using ENTRYPOINT in
executable form.

Very similar to CMD also used to tell what command to run after your container has started. Only
the last ENTRYPOINT will have an effect.

However, if you use ENTRYPOINT command then you cannot override the instruction by adding
command-line parameter to the docker run command. If you use ENTRYPOINT command then you
are implying the container is built for a specific use-case and the command should not be
overriden.

If you have this as your Dockerfile and running

This will simply print out "Hello World". But what happens if you add command line arguments after
the image name?

docker run entrypoint-instructions printenv

It will print out "Hello World printenv". So command-line arguments are simply appended as
additional parameters to the ENTRYPOINT command.

If you do want to override ENTRYPOINT you would use the --entrypoint flag and then provide in
the command you want to execute instead.

If you have both ENTRYPOINT and CMD in your Dockerfile then CMD's parameter will
just be appended to ENTRYPOINT as additional parameter just like what it would
happen if you provide additional command-line arguments to ENTRYPOINT.

ENTRYPOINT

FROM ubuntu

ENTRYPOINT ["echo", "Hello World"]

docker build -t entrypoint-instructions

docker run entrypoint-instructions

Combining ENTRYPOINT & CMD

FROM ubuntu

ENTRYPOINT ["echo", "Hello"]

CMD ["Ricky"]

Running this container without any argument will print out "Hello Ricky"

However, if you run the container with argument such as

docker run entrypoint-cmd hehexd

Because you provided command-line argument it will override the CMD result in printing "Hello
hehexd"

When using both instructions use it in exec form.

RUN, ENTRYPOINT, and CMD are all directives to run a command in your Dockerfile. All three takes two
forms of command, shell form and exec form.

1. Shell form
The commands are written without the [] brackets and are run by the container's shell as a child
process, the normal way of running things in Linux and by default the shell is /bin/sh -c

2. Exec form
The commands are written in [] brackets and are run directly, not through a shell, mean which
means is the main process with PID 1. You will not get shell features like variable substitution from
environment variable. In addition, you will not be able to pipe output, chain commands, IO
redirections. Those features are only possible with shell form.

In shell form, commands will inherit the environment variables from the shell

exec form vs shell form
Command forms

FROM alphine:latest

/bin/sh -c 'echo $HOME'

RUN echo $HOME

/bin/sh -c 'echo $PATH

CMD echo $PATH

FROM alpine:latest

RUN ["pwd"]

CMD ["sleep", "1s"]

Differences between shell and exec form

FROM alphine:latest

This will echo out /root because it is run in the shell

RUN echo $HOME

In addition, because the shell form runs the command via shell, i.e. it will spawn child process to
run the commands if you are going to stop the container it will require 2 signals to stop it. In exec
form because your process is the main process i.e. with PID of 1, when you stop the container
docker only needs to send one signal to stop the main process.

The container stops when the main process PID of 1 stops.

In essence, shell form since the executable is not the main process, it will not receive
signals.

In exec form since the executable is the main process (PID 1) it will receive signals.

Docker when you stop a container will sent the main process (PID 1) a SIGTERM to ask it nicely to
shutdown. If the main process doesn't handle SIGTERM like a shell script without trap then after a
grace period (10 seconds), SIGKILL is sent to forcefully stop shutdown the process. Which is why if
you run custom script that runs forever without handling SIGTERM it will take 10 seconds for it to
be forcefully shutdown.

RUN: Use shell form
ENTRYPOINT: Use exec form
CMD: Use exec form

This will just echo "$HOME" because it isn't using variable substitution, a shell feature.

RUN ["echo", "$HOME"]

Signals

Why does it take some time for container to stop

Recommended forms

The PID 1 is the shell, which will spawn the process that the program it is actually running.

Any environment variable referenced will be resolved to it's actual value.

If the shell script run.sh just echos out the parameter that it is passed in, then it will output the
actual path variable.

If you have the above ENTRYPOINT in shell form and wanted to add exec form for CMD like below

This will NOT expand the environment variable, in fact it will NOT even print "$PATH". This is
because shell form used in Dockerfile puts all the arguments in one big string.

So in the previous example, ENTRYPOINT ./run.sh "$PATH" results in running the command below in
the terminal

Since it is executed as part of the shell program, the environment variable will get expanded and
passed into the shell script.

However, with the second example it actually results in running below in the terminal

The way the shell program works if you pass in the -c flag is that only the first parameter will be
recognize as the program and the parameter you want to execute. Any parameter after it are just
simply IGNORED! Which means $PATH isn't even passed into the shell script!

exec form vs shell form PT.2
shell form

ENTRYPOINT ./run.sh "$PATH"

Using shell form with exec form

ENTRYPOINT ./run.sh

CMD ["$PATH"]

So what's going on?

/bin/sh -c "./run.sh $PATH"

/bin/sh -c "./run.sh" "$PATH"

Exec form takes the form of array of strings separated by commas. The way how it works is that it
uses the exec command underneath and it simply replaces the current running process with the
one you have specified. In this case, any command running in exec form will have PID of 1.

And because it is simply replacement of running process, there is no shell involved, and thus there
are not shell variable expansion.

Running:

will just print out $PATH LITERALLY, because shell isn't involved to do any expansions.

If you combine it with CMD in shell form it will just print out /bin/sh -c with any parameters that you
have included

If you combine it with CMD in exec form then it will just include any additional parameter you have
specified, WITHOUT shell expansion.

exec form

ENTRYPOINT ["./run.sh", "$PATH"]

Combining with CMD in shell form

Combining with CMD in exec form

This provides a graceful way of exiting the container. it will sent a SIGTERM to the main process
(PID 1), then after a grace period of 10 seconds if the main process still doesn't exit it will sent a
SIGKILL to forcefully kill the main process.

By default, this command sends SIGKILL, so no graceful shutdown.

docker stop vs docker kill
Docker stop

Docker kill

Each docker contain have a main process that is run via CMD / ENTRYPOINT command in the
Dockerfile. Once those processes finishes and exit then the container will stop and exit as well!

It will not run indefinitely. Images like NGINX will run forever because it has a foreground process
that is kept on listening for connections. If you take a look at the ENTRYPOINT command for NGINX
image, it will run the nginx program with daemon off, so it is running in the foreground as the main
process.

Images like php or ubuntu will exit immediately because the CMD that it executes by default is
/bin/bash or php interpreters. And you didn't allocate an interactive shell via --interactive and -tty.
Then it has no STDIN from the user, and therefore the /bin/bash just exits and thus container exits
as well.

Therefore if you want to keep your php or ubuntu running, use -it and -d, if you aren't changing the
default command, since the default command that is run is their interpreter.

For my use case I would change the CMD to start the PocketMine-MP server, and thus using -it isn't
needed because the server will run indefinitely just like nginx. I would use -d to not see any of the
outputs.

Why does my container
immediately exits?
Containers are not like virtual machines

So you got your command that you would like to run it using a docker container, problem is once
you got your program running using whatever mean possible, you see that it is running, but when
you want the program to finish because it is say a web service, you notice that it takes a significant
amount of time for the container to stop. You wonder to yourself, you read about docker stop
sending sigterm then after a grace period of 10 seconds it will send sigkill to forcefully kill the
process within the container.

You learned about that if the main program is ran under shell form, i.e. no JSON array, then your
main process will be spawned by a shell, with that shell being PID of 1. Shell by itself doesn't
handle sigterm signal, so you thought to yourself, let's make our main program the main process
by switching to exec form.

Now you got your program running under exec form, and you want to stop it again, but there it is,
it doesn't stop immediately either?! You know that your program is running under PID 1 so the
sigterm signal should reach the main process, and it should gracefully stop because you tested
locally. What's going on here?

It turns out Linux kernel treats PID 1 as a special case, and applies different rules on how it handle
signals. For a normal process if it doesn't register its own handlers for SIGTERM then it will use the
default implementation for handling SIGTERM which is to kill the process.

However, for PID 1, kernel will NOT fallback to the default behavior. Therefore, SIGTERM will have
no effect on the process. This is because PID 1 is run by the init process, and this is kind of safety
mechanism to prevent people from accidentally sending SIGTERM to the init process.

This is why your program will not react to the SIGTERM signal, because it is treated as the "init"
process by being PID of 1.

To solve this, we would need an init process to take care of the signal forwarding and reaping of
the process for us. Luckily we can do it in two ways:

1. Use the --init flag to use Tini as our init process
2. Use #!/usr/bin/dumb-init in your script to start a script with an init process that also takes

care of the signal forwarding. Note that dumb-init needs to be installed in the image
before it can be used because it is a separate program.

dumb-init for script
Problem

Special PID 1

Resolution

