
Merge conflict arises when you have two people changing the same line in a file OR if one person
deleted the file but the other modified (effectively keeping that file), then you tried to integrate
the changes together via either git merge or git rebase . Git cannot determine which one of the
changes is correct.

The merge process will come to a halt and need the developer's manually intervention in order to
proceed with the merge.

To create a merge conflict with git merge it is relatively simple, say you are on the main branch,
spawn off a branch called feature-a . As of now, main and feature-a are in sync because no
commits have been made yet.

Now say in main you create a file named "lmao", and appended "this is cool" to the file. Stage it
and commit it.

Now checkout into feature-a and create the same file named "lmao", but this time append "this is
not cool" to the file.

You see that we created the same file for both branches, but the content they have are different
and they are both at line number 1.

Now if you attempt to say merge feature-a into main now by doing git merge at main , you will
get a merge conflict, because git sees that both of the branches are changing the same file at the
same line, and it doesn't know which one of changes do you want.

Basing off from the same scenario as above, if you are currently at feature-a branch and say you
want to integrate the changes that your co-worker have been making in main . If you run git
rebase main you will also run into merge conflict.

But wait, isn't git rebase "replaying" the commits that you have made after it moves the feature-
a branch to sync with main ? Well yes, but you will have to define what "replaying" is actually
doing.

When does a merge conflict
happen?

What is merge conflict

Creating merge conflict with git merge

Creating merge conflict with git rebase

Under the hood, git rebase uses git cherry-pick , which will let you add arbitrary commits to the
current checked out branch. How does git cherry-pick work underneath? It internally finds the
diffs and then apply the patches which is the same exact way how git merge merges. So git
rebase is actually using git merge in a way under the hood, which as you know will have merge
conflicts.

If you want to read more about why git rebase results in merge conflicts this is a good
stackoverflow question: Link

The exact algorithm that is used is something called 3-way merge algorithm and here is the basics
of how it works:

1. Given two version of your code base X and Y. First find a suitable merge base B, this
merge base is the common ancestor of both of the version X and Y, this can be done
easily by walking up the the commits

2. Perform diff of X with B and Y with B. You will get two diff patches telling you how to get
from B to both X and Y.

3. Walk through each of the change blocks in the diff patches, if one of the patch touches a
block and the other leaves it, keep the version that had the change. If both diff patches
have the same change, keep either one. Now if both patches have changes in the same
spot and they don't match, mark it as a conflict to be resolved manually.

Another scenario that I encounter when you would have bunch of merge conflict is that say you're
in the main branch. In the main branch you made a couple of commits that touched files A, B, C.
Then you forked off from the main branch and spawned a feature branch called feature-a.

Now you go back to main branch and changed A and B and made those commits. Now let's go back
to feature-a, and pretend you did some kind of upgrade which removed files A and B, and created a
new file D. Now if you try to merge, feature-b into main, you will get merge conflicts because from
the base commits where all three files still exists, to main it kept A and B and made some changes.
But to feature-b branch, it deleted A and B and created D, Git sees that A and B are both changed
but doesn't know which know of the changes you actually want, thus merge conflict.

Now let's go back to the previous previous paragraph's scenario when you touched A, B, C and
forked off from main branch. Let's say from main you made a change to C and committed the
change. Then switched to feature-b and did an upgrade which removed A and B. Now when you
merge feature-b into main, you will NOT get a merge conflict, because from the base commit, main
didn't touch A and B, only feature-b touched A and B which removed them from the version control,
and Git knows that A and B should be removed and thus no merge conflict will occur.

How does git merge algorithm work?

Revision #3
Created 7 April 2023 13:14:40 by Tamarine
Updated 14 April 2023 23:33:00 by Tamarine

https://stackoverflow.com/questions/63089787/why-does-git-rebase-trigger-a-merge-conflict

