
Go with Examples
Introduction: Hello World, values, and variables
If/else
Switch Statement
Arry and Slices
Loops and range
Functions

Introduction: Hello World,
values, and variables
Go code layouts
A Go project is also called a module. A module is just a collection of packages.

A package is just a group of related .go files. You would declare the .go files that belong in the
same package with the line

For example: If you use the main package it is used to make the package an executable program
(you get a binary) because it contains your main function. The main package tells the Go compiler
that the package will be compiled as an executable program rather than a library which will not
produce an executable.

Otherwise, the package name can be whatever you want. However, keep the package name that
you are declaring the same as the directory that it is under. For example:

If you have a directory like such keep the package name that you use in helper.go as helper
because if do package lol which doesn't match the directory name. You would be importing the
helper package in main.go as

But when you want to call the function from the lol package it would be

package <package name>

src
	helper
 	- helper.go
 main.go

import (
	"module/path/helper
)

lol.helperFunc()

So keeping the directory name and the package name the same would make it easier for yourself
and for others to maintain.

Hello World

As you can see the fmt module that is imported is the built-in module in Golang for printing things
out to the consoles.

Println is just one of the functions inside fmt module to print things, there are many others.

Variables
Couple of ways of declaring a variable:

package main

import "fmt"

func main() {

 var a = "initial"
 fmt.Println(a)

 var b, c int = 1, 2
 fmt.Println(b, c)

 var d = true
 fmt.Println(d)

 var e int
 fmt.Println(e)

 f := "apple"
 fmt.Println(f)
}

Notice that the function is capitalized. This is not arbitary but rather telling Go that the
Println function from the fmt module is exported for others to use. If it is lower-case then it
cannot be used by others.

1. This is the most verbose way of declaring and assigning it, you have the type of the variable on
the right and then assignment to the variable of the expected type to the right of the assignment
operator

2. A simpler variable declaration and assignment of the previous method, you can skip out on the
type if the type on the right is what you want of the assignment. This is possible because the
compiler can infer the type in compile time

3. If you just want to declare the variable without assigning it here it is. The variable will have it's
zero value assigned.

4. You can also declare multiple var in a block. Also provide them with initialization as well

5. Go also have a short hand declaration that you can only use within a function. This method
cannot be used outside of the function, but var can be. You can just skip out the var keyword and
add in a colon. The compiler will use type inference to infer the type on the right.

6. There is also constants in Go but they are pretty limited. You can only assign them the values
that compiler can figure out at compile time. Type with constant is allowed as well.

var vs :=
There are limitation on := . Such as you cannot use it outside of functions to declare a global
variable like you can with var .

You cannot have a zero value if you are using := . You must assign something to it in order to
make it work.

var x int = 10

var x = 10

var x int

var (
	x int
 	y int
 	z string = "default"
)

x := 10

const y = "hello world"

Zero value
Type Zero value

Boolean false

Numeric types 0

Float 0

String "" (Empty string)

Structs Each of struct's key is set to their respective zero-value

If/else
If/else
If else is very similar to C except you just take out the parenthesis.

Notice that the else and else if MUST be after the closing bracket of the previous statement.
Otherwise, it will not compile.

Temporary variable
If/else generate it's own block, with this you can do something very interesting. You can declare
and assign a variable that is only valid within that particular if/else block like such:

Ternary operator?

func main() {
	x := 10
	
	if x > 10 {
		fmt.Println("It is greater than 10")
	} else if x < 10 {
		fmt.Println("It is less than 10")
	} else {
		fmt.Println("It is equal to 10")
	}
}

func main() {	
	if x := 10; x > 10 {
		fmt.Println("It is greater than 10")
	} else if x < 10 {
		fmt.Println("It is less than 10")
	} else {
		fmt.Println("It is equal to 10")
	}
}

No ternary operator, must use a full if/else branch for assignment of the variable.

Switch Statement
Switch Statement
Switch in Go is pretty nice, it function similar to the switch statement in C but better.

You can put case on multiple values rather than only just one. In addition, the default case is not
mandatory, you can leave it out of your program.

Switch on conditions
Furthermore, instead of switching on a value, in the previous example it was switching on the
variable x however, if you leave the value to switch on out, you can switch on other variables
conditionally.

x := 20

switch x {
 case 10, 20:
 fmt.Println("It is either 10 or 20")
 default:
 fmt.Println("It is not 10 and is not 20")
}

x := 22

switch {
 case x > 10:
 fmt.Println("It is greater than 10")
 case x < 10:
 fmt.Println("It is less than 10")
 case x == 10:
 fmt.Println("It is equal to 10!")
}

Arry and Slices
Array
An array can be declared with the following syntax:

For example if I want to create a list of array with length of 5:

The array is initialized with zero value of the type. So since it is integer it will be initialized to be 0.
If it were bool it will all be false .

Indexing
Indexing the array is just as the same as with other array

There are no negative indexing like Python to prevent unintentional bugs.

Slices
Array is fine on it's own, but it comes with a down side, in the sense that it is very rigid. If you want
to pass an array to a function, the size must be specified, otherwise, it cannot be passed.

Therefore, slices which are references to array are created to combat that issue. Passing slices of
array allows the size to vary depending on the array.

 The function below can only take in an array of 3 elements, if you want this function to work with
any array, then you will have to make it to take in a slice.

var <arr_name> [length]type

var a [5]int

arr_name[index]

func printArray(nums [3]int) {
	i := 0
	for i < len(nums) {
		fmt.Printf("The number is %d\n", nums[i])

This variation which just took out the number becomes a slice, which will allow it to take in any
slice of varying sizes.

		i += 1
	}
}

func printArray(nums []int) {
	i := 0
	for i < len(nums) {
		fmt.Printf("The number is %d\n", nums[i])
		i += 1
	}
}

Loops and range
For loops
The only looping construct in Go is the for loop. There is no while loop, but it is actually just merged
into the for loop.

Loop on condition
Basically while loop except you replace the while with for

Normal for loops
The same for loop that you see in C, Java, or JavaScript without the parenthesis.

You can break on condition as well.

Range
The range keyword is used to iterate through an iterable object such as an Array or Map.

i := 1

for i <= 3 {
 fmt.Println(i)
 i = i + 1
}

for j := 0; j < 5; j ++ {
 fmt.Prinltn(j)
}

nums := []int{1, 2, 3, 4}
for i, num := range nums {
 fmt.Println(i)
 fmt.Println(num)
}

If you don't want the index then you can replace it with _ to ignore that variable.

The range keyword can also be applied on Maps to iterate through the key-value pairs.

Functions
Functions
To write a function you would need to use the func keyword, provide the name of the funciton,
provide in the argument of the function, and finally the return type of the function:

Multiple return values
You can return multiple values in a function, however, you would need to explicit state what those
return values are:

In this case, the function vals will return two return values which are just simply two integers.
Notice that the return types are surrounded by parenthesis, this is needed, if you only have one
return value then you skip it.

Functions that takes in variable number of arguments
In Python, Java, JavaScript there is the concept of making function accept in a variable number of
arguments, in Go there is that concept too.

And surprisingly it is also done with the same operator ... in most languages.

The type of nums will be []int .

func plus(a int, b int) int {
 return a + b
}

func vals() (int, int) [
 return 10, 20
}

func sum(nums ...int) int {
 total := 0
 for _, num := range nums {
 total += num
 }
 return total
}

