
Packages vs Modules
Import packages / modules
Structs exported fields
Go with Examples

Introduction: Hello World, values, and variables
If/else
Switch Statement
Arry and Slices
Loops and range
Functions

Embed Modules
make vs new

Go / Golang

Forget about the packages and modules that you know from Python, it is no related, yes it is about
organizing files but not in the same way.

A package is made up of Go files that lives under the same directory. You can think about the
directory as the package name.

Every Go file must be under a package with the first line being

If the Go file is under the main package (i.e. just under src directory) then the package name will
be main.

Same Go files that are under the same directory will have the same package name, so they will all
have the same package line.

Modules are like npm in Node.js used for dependency management. You can build your own
module and then share it with others much like packages with npm.

In essence a module is just a collection of related packages. You would include a go.mod and
go.sum . The go.mod file gives the module a name and name it's dependency that is required for
this module.

You would create a module with a new Go project by running go mod init <module_path> .

module_path is compose of the repository URL + the module name. It tells Go where it will be able
to find the module. i.e. your module_path can be github.com/tamaarine/testgoproject . Where Go will
know to find the module it will have to github and under that link to find the module dependency.

Packages vs Modules
Preliminary

Packages

package <package name>

Modules

If say your directory layout is like below:

A very simple directory, you wrote some helper function in helper.go and you would like to use it
in main.go . Now because they are under the same package you do not need do anything importing
to use the functions / global variables that's defined in helper.go in main.go , you can just call it as
if they are already in the same file.

So instead of putting the helper file in the same package you decided to be a little fancy and
include it in another directory (package) on it's own like below:

Now how can I use it in main.go ? Since it is in another package now you would need to explicitly
import it in main.go in order to use it. The way that you would import it is by importing it using the
module_path name.

Import packages / modules
I have a helper file that I would like to use within
the same project.

src

	main.go

 helper.go

However, when you compile you would need to provide either build / run with both of the
files that you use.
If you just run go build main.go or go run main.go it will not work. You must run
go build main.go helper.go or go run main.go helper.go .
To link all the files you need to explicitly mention it.

I have a package that I would like to use within
the same project

src

	main.go

 - helper

 		helper.go

For example, if this local project's module_path is github.com/tamaarine/testproject, or whatever, it
doesn't matter if it is published under that URL, you would import the helper package by writing

Then you can access the functions or variables that's defined in that package by using
helper.<function/variable name> .

Okay cool, say you got yourself a module under the module_path=github.com/tamaarine/testgoproject
but you haven't published it into any repository but your local project wants to use it because you
want your stuff to be modularized. How do you do it?

Well you would use the replace directive within your go.mod file.

In this case, say we are making a new project under the module_path=local/project2 and we want
the module that haven't been published to a repository yet. By using the replace directive you can
tell Go to find the module in another place, in this case in the local file directory.

Left side consist of the module that you would like to replace, and the right side is the local
directory to the module root directory where it contains the go.mod file.

import (

	"github.com/tamaarine/testgoproject/helper"

)

Do keep in mind that those functions or variables that you decide to export through this way
need to be explicitly exported, by making their name capitalized. So instead of function
name add, it needs to be Add. To tell Go that this function is going to be exported and be
used.

Doing it this way you do not need to add any files to the build / run CLI. You can just do go
run main.go and it will compile without any complains.

I made a module that I haven't published yet to
a repository, but I want to use it in another local
project, how do I do it?

module local/project2

go 1.20

replace github.com/tamaarine/testgoproject => /home/tamarine/GoProject/Project1

Using replace directive basically substitute the module path with another. This can be useful if
you're developing a new module but you haven't published the code to a repository yet but just
want to test it locally. Or you found an issue with the dependency, so you cloned the repo and fixed
it and wanted to test it without pushing the change yet.

Like functions if you would like to export a struct from a package for another package or module to
use then the first letter of the struct name must be capitalized, otherwise it is not exported and
cannot be used.

When you are initializing a struct you can use named fields to assign value to the fields such as:

Keep in mind that the field must also be exported in order for key-value assignment, otherwise, you
cannot assign to it and will receive the default value.

If the struct definition is within the same go file then whether or not the struct / field itself is
exported it doesn't matter, you can use it within the same go file. Assign the key-value pair
regardless of whether the field is actually exported.

Very similar to the previous case, if the struct are defined within the same package, you can just
use it whether or not the struct / field itself is exported. You can also assigned to any unexported

Structs exported fields
Exported structs and fields

type ComplexNum struct {

	Real int

	Complex int

}

c1 := structs.ComplexNum{Real: 10, Complex: 20}

Special case: Struct are in the same go file

type complexNum struct {

	real int

	complex int

}

func main() {

	c1 := complexNum{real: 10, complex: 30}

	fmt.Println(c1)

}

Special case: Struct are in the same package

field, it doesn't not matter.

Go with Examples

Go with Examples

A Go project is also called a module. A module is just a collection of packages.

A package is just a group of related .go files. You would declare the .go files that belong in the
same package with the line

For example: If you use the main package it is used to make the package an executable program
(you get a binary) because it contains your main function. The main package tells the Go compiler
that the package will be compiled as an executable program rather than a library which will not
produce an executable.

Otherwise, the package name can be whatever you want. However, keep the package name that
you are declaring the same as the directory that it is under. For example:

If you have a directory like such keep the package name that you use in helper.go as helper
because if do package lol which doesn't match the directory name. You would be importing the
helper package in main.go as

But when you want to call the function from the lol package it would be

Introduction: Hello World,
values, and variables
Go code layouts

package <package name>

src

	helper

 	- helper.go

 main.go

import (

	"module/path/helper

)

lol.helperFunc()

So keeping the directory name and the package name the same would make it easier for yourself
and for others to maintain.

As you can see the fmt module that is imported is the built-in module in Golang for printing things
out to the consoles.

Println is just one of the functions inside fmt module to print things, there are many others.

Couple of ways of declaring a variable:

Hello World
package main

import "fmt"

func main() {

 var a = "initial"

 fmt.Println(a)

 var b, c int = 1, 2

 fmt.Println(b, c)

 var d = true

 fmt.Println(d)

 var e int

 fmt.Println(e)

 f := "apple"

 fmt.Println(f)

}

Notice that the function is capitalized. This is not arbitary but rather telling Go that the
Println function from the fmt module is exported for others to use. If it is lower-case then it
cannot be used by others.

Variables

1. This is the most verbose way of declaring and assigning it, you have the type of the variable on
the right and then assignment to the variable of the expected type to the right of the assignment
operator

2. A simpler variable declaration and assignment of the previous method, you can skip out on the
type if the type on the right is what you want of the assignment. This is possible because the
compiler can infer the type in compile time

3. If you just want to declare the variable without assigning it here it is. The variable will have it's
zero value assigned.

4. You can also declare multiple var in a block. Also provide them with initialization as well

5. Go also have a short hand declaration that you can only use within a function. This method
cannot be used outside of the function, but var can be. You can just skip out the var keyword and
add in a colon. The compiler will use type inference to infer the type on the right.

6. There is also constants in Go but they are pretty limited. You can only assign them the values
that compiler can figure out at compile time. Type with constant is allowed as well.

There are limitation on := . Such as you cannot use it outside of functions to declare a global
variable like you can with var .

You cannot have a zero value if you are using := . You must assign something to it in order to
make it work.

var x int = 10

var x = 10

var x int

var (

	x int

 	y int

 	z string = "default"

)

x := 10

const y = "hello world"

var vs :=

Type Zero value

Boolean false

Numeric types 0

Float 0

String "" (Empty string)

Structs Each of struct's key is set to their respective zero-value

Zero value

Go with Examples

If else is very similar to C except you just take out the parenthesis.

Notice that the else and else if MUST be after the closing bracket of the previous statement.
Otherwise, it will not compile.

If/else generate it's own block, with this you can do something very interesting. You can declare
and assign a variable that is only valid within that particular if/else block like such:

If/else
If/else

func main() {

	x := 10

	

	if x > 10 {

		fmt.Println("It is greater than 10")

	} else if x < 10 {

		fmt.Println("It is less than 10")

	} else {

		fmt.Println("It is equal to 10")

	}

}

Temporary variable

func main() {	

	if x := 10; x > 10 {

		fmt.Println("It is greater than 10")

	} else if x < 10 {

		fmt.Println("It is less than 10")

	} else {

		fmt.Println("It is equal to 10")

	}

}

Ternary operator?

No ternary operator, must use a full if/else branch for assignment of the variable.

Go with Examples

Switch in Go is pretty nice, it function similar to the switch statement in C but better.

You can put case on multiple values rather than only just one. In addition, the default case is not
mandatory, you can leave it out of your program.

Furthermore, instead of switching on a value, in the previous example it was switching on the
variable x however, if you leave the value to switch on out, you can switch on other variables
conditionally.

Switch Statement
Switch Statement

x := 20

switch x {

 case 10, 20:

 fmt.Println("It is either 10 or 20")

 default:

 fmt.Println("It is not 10 and is not 20")

}

Switch on conditions

x := 22

switch {

 case x > 10:

 fmt.Println("It is greater than 10")

 case x < 10:

 fmt.Println("It is less than 10")

 case x == 10:

 fmt.Println("It is equal to 10!")

}

Go with Examples

An array can be declared with the following syntax:

For example if I want to create a list of array with length of 5:

The array is initialized with zero value of the type. So since it is integer it will be initialized to be 0.
If it were bool it will all be false .

Indexing the array is just as the same as with other array

There are no negative indexing like Python to prevent unintentional bugs.

Array is fine on it's own, but it comes with a down side, in the sense that it is very rigid. If you want
to pass an array to a function, the size must be specified, otherwise, it cannot be passed.

Therefore, slices which are references to array are created to combat that issue. Passing slices of
array allows the size to vary depending on the array.

 The function below can only take in an array of 3 elements, if you want this function to work with
any array, then you will have to make it to take in a slice.

Arry and Slices
Array

var <arr_name> [length]type

var a [5]int

Indexing

arr_name[index]

Slices

func printArray(nums [3]int) {

	i := 0

	for i < len(nums) {

		fmt.Printf("The number is %d\n", nums[i])

		i += 1

This variation which just took out the number becomes a slice, which will allow it to take in any
slice of varying sizes.

	}

}

func printArray(nums []int) {

	i := 0

	for i < len(nums) {

		fmt.Printf("The number is %d\n", nums[i])

		i += 1

	}

}

Go with Examples

The only looping construct in Go is the for loop. There is no while loop, but it is actually just merged
into the for loop.

Basically while loop except you replace the while with for

The same for loop that you see in C, Java, or JavaScript without the parenthesis.

You can break on condition as well.

The range keyword is used to iterate through an iterable object such as an Array or Map.

Loops and range
For loops

Loop on condition

i := 1

for i <= 3 {

 fmt.Println(i)

 i = i + 1

}

Normal for loops

for j := 0; j < 5; j ++ {

 fmt.Prinltn(j)

}

Range

nums := []int{1, 2, 3, 4}

for i, num := range nums {

 fmt.Println(i)

 fmt.Println(num)

}

If you don't want the index then you can replace it with _ to ignore that variable.

The range keyword can also be applied on Maps to iterate through the key-value pairs.

Go with Examples

To write a function you would need to use the func keyword, provide the name of the funciton,
provide in the argument of the function, and finally the return type of the function:

You can return multiple values in a function, however, you would need to explicit state what those
return values are:

In this case, the function vals will return two return values which are just simply two integers.
Notice that the return types are surrounded by parenthesis, this is needed, if you only have one
return value then you skip it.

In Python, Java, JavaScript there is the concept of making function accept in a variable number of
arguments, in Go there is that concept too.

And surprisingly it is also done with the same operator ... in most languages.

Functions
Functions

func plus(a int, b int) int {

 return a + b

}

Multiple return values

func vals() (int, int) [

 return 10, 20

}

Functions that takes in variable number of arguments

func sum(nums ...int) int {

 total := 0

 for _, num := range nums {

 total += num

 }

 return total

}

The type of nums will be []int .

This module is a super duper cool module in the sense that you are able to pack static files into
your binary, rather than having your program relying on the actual file being present in your
filesystem when it is ran.

Normally when you do deployment with a Go server, you would have the server binary, the static
frontend files that is open and serve by the Go server. You can pack everything into a Docker
image so the server that's running your web application can just spin up the container which will
have everything. However, in Golang 1.16 you can directly embed your static frontend files into the
binary so you do not need a docker image to pack your static files in. You can just embed it directly
into your binary.

To get started with using the Embed module you would actually use the embed directives which
instructs compiler at compile time what to do.

For example:

1. $PATH is the file or directory that you want to include. If you use dataa type embed.FS then
you can put multiple files or multiple directories

2. $WANTED_DATA_TYPE needs to be replace with one of the followings
1. string = Accepts a single file and when the binary is built, it wil lread the content of

that entire file into the variable as a string. If you use this you can only embed in
ONE file. No multiple files or a directory

2. []byte = Same as String, but it will be read in as []byte
3. embed.FS = Using this data type you are allowed to embed multiple directories and

even files. This struct implements the io/FS interface, which means that net/http
package can use it as part of the handler

embed.FS after you embed the files into the binary, you can open files that are included as part of
the binary. Even if the files / directory doesn't exist after the program is ran. Magic. Power of
embedded files.

Embed Modules
Embed Module

Embed directives

//go:embed $PATH

var content $WANTED_DATA_TYPE

Note about embed.FS

Do keep in mind that the directory that you embed, the variable that it is assigned under refer to
the root directory that contains the directory or file. For example:

The variable embeddedFS refers to a "root directory" that contains the "static" directory (I put it in
quotes because it is in the binary not in the actual OS filesystem

Thus if you want to say open a file you need to do:

And not this:

In terms of net/http package, that means the files will be serve the subdirectory that you embed
as. For example, if you embed static/index.html , and you add a handler "/" that references the
particular static/index.html file, you will have to visit localhost:80/static/index.html or
localhost:80/static in order to see the file rather than just localhost:80 .

To solve that problem you would need use fs.Sub which:

Basically returns you a filesystem that is rooted at the provided filesystem, making an "alias" per
se.

//go:embed static/

var embeddedFS embed.FS

embeddedFS.Open("static/index.html")

embeddedFS.Open("index.html")

Sub returns an FS corresponding to the subtree rooted at fsys's dir.

make vs new

