
A Go project is also called a module. A module is just a collection of packages.

A package is just a group of related .go files. You would declare the .go files that belong in the
same package with the line

For example: If you use the main package it is used to make the package an executable program
(you get a binary) because it contains your main function. The main package tells the Go compiler
that the package will be compiled as an executable program rather than a library which will not
produce an executable.

Otherwise, the package name can be whatever you want. However, keep the package name that
you are declaring the same as the directory that it is under. For example:

If you have a directory like such keep the package name that you use in helper.go as helper
because if do package lol which doesn't match the directory name. You would be importing the
helper package in main.go as

But when you want to call the function from the lol package it would be

Introduction: Hello World,
values, and variables

Go code layouts

package <package name>

src

	helper

 	- helper.go

 main.go

import (

	"module/path/helper

)

lol.helperFunc()

So keeping the directory name and the package name the same would make it easier for yourself
and for others to maintain.

As you can see the fmt module that is imported is the built-in module in Golang for printing things
out to the consoles.

Println is just one of the functions inside fmt module to print things, there are many others.

Couple of ways of declaring a variable:

Hello World
package main

import "fmt"

func main() {

 var a = "initial"

 fmt.Println(a)

 var b, c int = 1, 2

 fmt.Println(b, c)

 var d = true

 fmt.Println(d)

 var e int

 fmt.Println(e)

 f := "apple"

 fmt.Println(f)

}

Notice that the function is capitalized. This is not arbitary but rather telling Go that the
Println function from the fmt module is exported for others to use. If it is lower-case then it
cannot be used by others.

Variables

1. This is the most verbose way of declaring and assigning it, you have the type of the variable on
the right and then assignment to the variable of the expected type to the right of the assignment
operator

2. A simpler variable declaration and assignment of the previous method, you can skip out on the
type if the type on the right is what you want of the assignment. This is possible because the
compiler can infer the type in compile time

3. If you just want to declare the variable without assigning it here it is. The variable will have it's
zero value assigned.

4. You can also declare multiple var in a block. Also provide them with initialization as well

5. Go also have a short hand declaration that you can only use within a function. This method
cannot be used outside of the function, but var can be. You can just skip out the var keyword and
add in a colon. The compiler will use type inference to infer the type on the right.

6. There is also constants in Go but they are pretty limited. You can only assign them the values
that compiler can figure out at compile time. Type with constant is allowed as well.

There are limitation on := . Such as you cannot use it outside of functions to declare a global
variable like you can with var .

You cannot have a zero value if you are using := . You must assign something to it in order to
make it work.

var x int = 10

var x = 10

var x int

var (

	x int

 	y int

 	z string = "default"

)

x := 10

const y = "hello world"

var vs :=

Type Zero value

Boolean false

Numeric types 0

Float 0

String "" (Empty string)

Structs Each of struct's key is set to their respective zero-value

Zero value

Revision #3
Created 26 May 2023 02:35:25 by Tamarine
Updated 29 May 2023 03:26:05 by Tamarine

