
Maven is a build automation tool at heart. It has three built-in lifecycle that clearly define how the
project will be build. There are three built-in build lifecycles:

1. default: handles the actual project compilation and deployment
2. clean: handles project cleaning, removing the target folder
3. site: handles the creation of project site documentation

You "can" add more lifecycle but then that go against the point of creating those three built-in build
lifecycles. Those three built-in ones should be the standard of all the projects, you can create your
own plugins and then hook it into the phases within the lifecycle.

Adding more lifecycle would take away the ease of reproducing the build and maintaining it.

Each of the lifecycle consists of phases. So you have life cycles like default, it consists of phases,
and each phases consists of goals.

Not going to list them all but here are some of the phases in order:

validate
compile
test
package
verify
install
deploy

When you execute a phase all the goals tied to the goal will be executed. In addition, when you
execute a phase all the previous steps will be executed. For example, executing mvn install will
execute, validate, compile, test, package, verify, and install in order.

Lifecycle, Phases, goals, and
Plugins?!

Maven Lifecycle

Phases in default

There is no way to execute the "lifecycle", to execute the lifecycle you would just specify the
last phase to run through the entire phases. In this case running mvn deploy will in a sense

Let's clear something up, all the available goals are provided by plugins. The compile phase's goals
are provided by the "maven-compiler-plugin", the package phase's goal are provided by the
"maven-jar-plugin", you get the idea.

A build phase doesn't necessarily need to have any goal bound to it. If it has no goal bound to it, it
will simply not execute any goal.

However, the same goal can be bounded to multiple different build phases, so that goal will just be
executed multiple times when the phase is executed.

Furthermore, not all the goals from a plugin are bind a phase. For example, the maven-compiler-
plguin have two goals, compile / testCompile . However, only the compile goal is bound to the
compile phase. You can add testCompile to the phase by adding an <executions> section in your
plugin tag, will go more over that in the next section.

Goals are the actual task that are executed, they help building and manage the project. Phases and
lifecycle are essentially just abstraction of goals.

Goals may or may not not bound to a phase, those that are tied to a phase will be executed when
you run the phase. Those are not bound to a phase, you can invoke them directly. By using the
syntax discussed above.

To bound a plugin's goal to a phase if they are not bound by default, or you would like to bound to
a different phase, i.e. adding jar plugin's jar goal to the compile phase. Whenever you run mvn
copmile it will also package it as a jar, as oppose to whenever you run mvn package if you don't
want to run test phase before it. What you would do is to add a <executions> section in your
pom.xml file.

run the entire lifecycle

Maven phases

Official maven plugin like compile, package have standard name of "maven-<name>-
plugin", whereas non-official maven plugin have "<name>-maven-plugin" naming
convention.

The implication is that when you want to invoke the goal directly without invoking the phase
if you are using official maven plugin is just "<name>:<goal>" for example, mvn
compiler:compile . You don't need to do mvn maven-compiler-plugin:compile . However,
unofficial maven plugins then you would need to provide the entire plugin name to invoke
the goal.

Maven goals (Mojos)

If you would like to add a goal that isn't by default mapped to one of the default phases for your
plugin, or you would like to add it to different phase then you would need to append a <executions>
section for your plugin.

For example, the jar:jar goal which build a JAR from the current project is by default bind to the
package but if you want to run the goal whenever compile plugin is run then you can add the
following section to your pom.xml

What this section does is that it will bind the goal jar:jar remember goals can be bind to multiple
phases, to the compile phase, with the id compile-jar . The id is there so that when you invoke the
mvn command, the execution output will be in the form of

So in this case, as part of the compile phase, it will be running maven-jar-plugin:2.2.2:jar
(compile-jar) , so right after you compile your code, you will pack it into a jar.

Configuring plugin execution

 <executions>

 <execution>

 <id>compile-jar</id>

 <phase>compile</phase>

 <goals>

 <goal>jar</goal>

 </goals>

 </execution>

 </executions>

<plugin-name>:<plugin-version>:<phase> (<execution-id>)

Scenarios for executions

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-docck-plugin</artifactId>

 <version>1.0</version>

 <executions>

 <execution>

 <id>some-other-other-id</id> <!-- No goal for execution is defined -->

 <phase>pre-site</phase>

 </execution>

 <execution>

 <phase>pre-site</phase> <!-- No id for execution is defined -->

 <goals>

Results in sample output as following

If no goal is specified then that execution is simply ignored. If a phase have no goal then it will just
be ignored, because there is nothing to execute.

If no id is defined for a specified execution, but goal and phase is specified then it will simply
execute with the id of default .

If no phase is defined, then that execution of plugin goal is simply not run.

 <goal>check</goal>

 </goals>

 </execution>

 <execution>

 <id>some-id</id> <!-- No phase for execution is defined --

>

 <goals>

 <goal>check</goal>

 </goals>

 </execution>

 <execution>

 <id>some-other-id</id> <!-- Both id and phase defined -->

 <phase>pre-site</phase>

 <goals>

 <goal>check</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

[INFO] --- maven-docck-plugin:1.0:check (default) @ MavenJavaApplication ---

[INFO] Skipping unsupported project: MavenJavaApplication

[INFO] No documentation errors were found.

[INFO]

[INFO] --- maven-docck-plugin:1.0:check (some-other-id) @ MavenJavaApplication ---

[INFO] Skipping unsupported project: MavenJavaApplication

[INFO] No documentation errors were found.

Execution 1: No goal for execution is defined

Execution 2: No id for execution is defined

Execution 3: No phase for execution is defined

Then it will get ran during the specified phase with the specified id

The goals that are invoked directly from the command line for example mvn jar:jar (invoking the
jar goal from the maven-jar-plugin) it will have the execution id of default-cli because you ran it
in the CLI.

This ID is provided so that you can provide further configuration if needed for the plugin that's ran
from CLI, by using the execution id of default-cli in your pom.xml file.

Plugin goals that are mapped to the default lifecycle like some of the official maven plugin such as
maven-jar-plugin will have their execution id to be default-<goalName> for example:

The clean plugin's default goal mapping maps the clean goal to the clean phase with the
execution id of default-clean .

Again this is there so that you can further configure these official built-in goals, it is a naming
convention after all.

You can find out about this by looking at the effective pom via mvn help:effective-pom.

Execution 4: id, phase, and goal is defined

default-cli vs default-<goalName>

 <artifactId>maven-clean-plugin</artifactId>

 <version>2.5</version>

 <executions>

 <execution>

 <id>default-clean</id>

 <phase>clean</phase>

 <goals>

 <goal>clean</goal>

 </goals>

 </execution>

 </executions>

Revision #3
Created 11 May 2023 18:01:27 by Tamarine
Updated 13 May 2023 00:54:48 by Tamarine

