
So what is Mockito? It is framework that is used on top of testing framework library like JUnit test to
provide mocking and stubbing capability of objects for your unit test or integration tests.

"Mocking is the act of removing external dependencies from a unit test in order to create a
controlled environment around it. Typically, we mock all other classes that interact with the class
that we want to test". This is so that you can get a consistent behavior regardless how the external
dependency actually react.

So we are basically pulling out the external dependency and substitute in a fake object
in it's place to use for testing purposes only.

Why do you need to mock (fake) an object? Well, if the external dependency that your code base
depends on is slow, and requires reading large files, or needs a database connection setup, you
wouldn't want to set that up every time your test is run right?

That's where mocking comes into play, you assume that the external dependency you use are
working, then you will fake those method calls that your code base is calling on those external
dependency to return values that you expect it to return.

In mocking theory:

A stub is a fake class that comes with preprogrammed return values. This gives you full
control of the object, letting you control the return value when a certain method is called.
A mock is a fake class as well, that can be examined after the test is finished for its
interaction with the class under test. You can whether a particular method is invoked and
also see how many times that method has been invoked.

In Mockito, it uses the terminology "mock "for both stub and a mock.

Mockito how does it work?

Background

Mock? Stub?

So stubbing is the act of faking a method. You choose how the method behaves. This is done
using when().thenReturn() calls.
Mocking on the other hand is done by using verify() from the Mockito library, to inspect the
mocked object.

Stubbing is done via the when().thenReturn() method call on the mocked object. For example:

When the find method is called on entityManager and passed in the int value 2, then it will return
1.

When the find method is called on entityManager and passed in any string value, then it will
return 5.

Assuming that the find method is overloaded of course.

By default, for all methods that return values, if it returns an object it will return null, an empty
collection, or an appropriate primitive default value if the method returns a primitive such as 0 for
integers, false for booleans and so on.

This means that a mocked object doesn't inherit any of the original method that the
class actually has!

You can change this behavior to have the real methods from the class to be called when not
stubbed by adding

However, this is not recommended since they could use fields that doesn't exist in the mocked
object :).

Now we discussed stubbing how about mocking? How do we inspect whether or not the method is
called in an object and how many it has been called?

We can do that by calling the verify function.

The first verify will check whether or not the object emailSender called sendEmail with the specified
parameter once. By default if you don't provide the number of invocation to check it will default to

Basic stubbing with mockito

when(entityManager.find(2)).thenReturn(1);

when(entityManager.find(anyString())).thenReturn(5);

What happens if you don't stub method and call it?

mock(Example.class, Mockito.CALLS_REAL_METHODS);

Basic mocking with mockito

verify(emailSender).sendEmail(sampleCustomer);

verify(emailSender, times(0)).sendEmail(sampleCustomer);

1. i.e. it should only be invoked once.

The second verify will check that the object didn't call sendEmail at all.

Revision #1
Created 14 April 2023 20:22:11 by Tamarine
Updated 14 April 2023 21:46:13 by Tamarine

