
They are metadata that you can write into your Java program. They don't affect the execution of
your code directly, but they can be processed by the compiler or at runtime to change the behavior
of your code.

You should already have seen couple of common annotations such as @SupressWarnings(param),
to get rid of those warning such as unused variables. You have to specify what kind of warnings
you want to suppress, "unused" in this case to get rid of unused variable warnings.

Annotations can be added to classes, methods, variables, and even annotations themselves.

To create your own annotation you would do something similar to creating your own class:

Declaring the annotation is really all you need to create your own annotation, but there are two
annotation that you would want to use to custom it further. Those are @Target, and @Retention.

@Target allow you to specify what kind of Java element this annotation is valid to be used for. For
example, make it so that you can only apply this annotation to a class, to a method, to a variable,
or even to an interface. If you want to specify multiple target you would use an array of
ElementType.<Java element>.

What the heck are
@Annotations?

Annotation

Creating custom annotation

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.SOURCE)

public @interface VeryImportant {

}

@Target({ElementType.TYPE, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface VeryImportant {

Tells Java when to discard the annotations.

@Retention, most of the time you would use RetentionPolicy.RUNTIME which means to keep this
annotation around through the running of your program so that other code can inspect this
annotation and process it such.

The other two possible value is SOURCE and CLASS. SOURCE will get rid of annotation before the
compilation of your code. These are annotation that matter before the program is being compiled
such as @SupressWarning. CLASS will keep your annotation through the compilation process, but
once your program starts those annotation will be discarded.

To add parameter to your annotation you have to declare them inside your annotation definition as
a method, even though they are kind of accessed like a field:

For example, in this annotation we specified for the @VeryImportant annotation it has a required
String parameter that you must passed into the annotation when you use it.

You can set up default values for each of the parameter of annotation, but if they don't have
default value they are required.

The type of parameter for annotation are limited, they can only be primitives such as String, int,
float, boolean, or an array type by adding brackets.

}

Retention policy

Adding parameter to annotation

@Target({ElementType.TYPE, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface VeryImportant {

 String why();

}

@Target({ElementType.TYPE, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface VeryImportant {

 String why();

 int random() default 1;

 int[] nums;

}

Accessing parameter of annotation

To access the parameter that you have passed to the annotation you have to first retrieve the
annotation object by calling getAnnotation on the object, method, or variable the thing that you
annotated on.

Then you can just access it as a getter method, by calling on the name you have set in the
annotation.

The annotation by themselves, with @Target and @Retention doesn't really do much on their own.
It is the code that you write that actually inspects the annotation that gives them special effects.

You can inspect class instances to check whether they have a particular annotation by calling
isAnnotationPresent(Annotation.class) . For example:

If the class Cat is annotated with the @VeryImportant annotation then this method will return true ,
otherwise if it is not annotated with @VeryImportant it will return false.

Java reflection is an API that is provided by Java to get metadata about an Java object. Things like
getting the list of methods is inspecting the metadata about the Java object.

getDeclaredMethods() returns you a list of Method objects which you can print out which tells you
the method name that this particular object has. In addition, you can also invoke them by calling
.invoke on each of the Method objects.

getDeclaredFields() return you a list of Field object which are fields that you have inside your
object. This is how you would be accessing the annotation that you did on each of the field of your
object.

VeryImportant annotation = myCat.getAnnotation(VeryImportant.class);

annotation.why();

Processing annotation

Cat myCat = new Cat("Stella");

myCat.getClass().isAnnotationPresent(VeryImportant.class);

Java reflection

Revision #2
Created 3 February 2023 16:53:03 by Tamarine
Updated 10 March 2023 19:52:26 by Tamarine

