
Asymmetric key encryption is key to many things, especially for TLS handshake in HTTPS protocol.
How it works is that you first generate a pair of key, one is referred to the public key, and the other
is referred to as the private key.

Public and private key just consists of some numbers and uses modular exponentiation to do the
actual encryption and decryption. You have several member at play here:

e is the encryption exponent. This is a public value that everybody basically uses the
same value, usually 65537
d is the decryption exponent. You will be generating this and need to be kept as a secret,
as part of your private key
n is the modulus, same as e it is also public and is generated

How these numbers are generated aren't that important to the context of explaining cryptography,
but if you would like to know refer to the bottom section

To do encryption, you raise the message to the power of e modulo n

To do decryption, you raise the ciphertext to the power of d modulo n, which will recover the
original message

To do signing, you raise the message to the power of d modulo n, which signs the message

To do verification, you raise the signature to the power of e modulo n, which recover the original
message verifying that you indeed signed it.

By running the above command it will output all the number components of your private key which
just consists of those numbers we have discussed:

Public and Private key
encryption/decryption

Cryptography 101

How to get detail about your private key
openssl rsa -text -in private_key.pem

The number are in hexadecimal, every two hexadecimal character is separated by a colon for
readability.

You can recover the actual n and d value by just using a simple python script convert the
hexadecimal to base 10.

First you have to generate a public and private key pair by running

The .pem file contain both the private and public key, because remember private key consists of d
and n, and public key consists of e and n. The .pem file contain all the numbers.

Private-Key: (1024 bit)

publicModulus:

 00:e0:ae:82:8f:6a:92:0a:bb:66:95:34:04:e6:82:

 03:9a:fd:93:1d:6c:ed:e7:50:7a:74:da:ba:70:8f:

 f9:a4:b4:16:de:f9:9c:30:bf:15:d5:0e:6d:27:24:

 9f:ea:69:4d:a2:21:22:6e:47:fe:cc:9f:8d:b0:84:

 3f:f3:8e:fc:04:83:44:71:0d:ba:fd:7d:3f:f3:28:

 05:49:1e:47:a9:a7:14:94:57:71:5f:47:4f:4a:54:

 9f:b3:e4:48:6d:28:13:50:48:37:56:8b:33:d5:fa:

 b1:f5:89:b9:a6:16:2f:47:c2:9b:fd:14:0d:d1:ba:

 3a:41:4b:88:88:ed:a8:a1:ef

publicExponent: 65537 (0x10001)

privateExponent:

 26:7d:5e:ba:68:dc:49:e0:5e:ab:72:b4:e0:34:27:

 9f:f6:8e:ac:3c:cb:e8:93:7d:d6:e4:dd:89:88:f0:

 90:49:95:9d:6f:0f:55:be:76:64:00:4b:ac:a7:f6:

 89:36:ae:e8:f6:5a:2a:a0:44:c3:13:16:37:c6:00:

 1a:9e:45:07:c2:af:c7:0b:66:a0:ef:60:01:c1:e1:

 e8:d2:c7:f5:bb:f0:f9:82:3a:67:f8:08:46:1e:76:

 63:29:94:c8:3b:d3:ce:0a:fb:90:84:ce:f8:b2:a5:

 17:2c:73:3e:c4:fd:7f:b1:08:61:be:0b:6c:b3:81:

 f8:50:fe:20:62:09:b0:31

One hexadecimal integer can be represented by 4 bits, 2 hexadecimal integer together is 8
bits which is 1 byte. Which is probably why it is separated into groups of 2. And on top of
being readable.

How to do encryption and decryption using openssl?

openssl genrsa -out key.pem

So to extract out the public key you would run the command:

Finally to encrypt a message run the following command:

To decrypt the message run the following command:

To sign a message:

This will sign (encrypt with private key), the hashed 256 of the message input and output the
signature to the file message.sig

To verify a signature:

If everything goes well, the message is indeed sent by the sender it will output "Verified OK"

This command basically take the hash of the input file, then verify (decrypt with public key the
signed message) and compared whether or not the hash retrieved from signed message is equal to
the hash that you took on the message file.

1. First you pick two prime numbers as p and q, any is fine

2. Multiply them together

openssl rsa -in key.pem -pubout -out public.pub

openssl rsautl -encrypt -inkey public.pub -pubin -in plaintext.txt -out encrypted

openssl rsautl -decrypt -inkey key.pem -in encrypted

How to sign a message and verify it using openssl?

openssl dgst -sha256 -sign key.pem -out message.sig message

openssl dgst -sha256 -verify pub.pub -signature message.sig message

More info please! How are e, d, n generated?

p = 7

q = 13

n = p * q

n = 7 * 13

n = 91

3. Then find the Euler's totient function of n

4. Then pick a random e such that it is between φ(n) and 1 and is coprime with φ(n), meaning no
common factors between e and φ(n)

Let's say e=23

5. Finally compute d which is the modular multiplicative inverse of e

Then public key is (n = 91, e=23)

And private key is (n=91, d=47)

Big thanks to https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html for
simply explaining the math behind asymmetric key generation.

φ(n) = (p - 1) * (q - 1)

φ(91) = (7 - 1) * (13 - 1)

φ(91) = 6 * 12

φ(91) = 72

// φ(n) = (p - 1) * (q - 1) is a special case of the Euler totient function

// For more explanation on the proof of this https://crypto.stackexchange.com/a/5716

1 < e < φ(91)

1 < e < 72

e^-1 = d (mod φ(n))

23^-1 = d (mod φ(91))

23^-1 = d (mod 72)

23 * d = 1 (mod 72)

23 * 47 = 1 (mod 72)

d = 47

Revision #3
Created 12 April 2023 21:52:49 by Tamarine
Updated 12 April 2023 23:47:00 by Tamarine

https://www.onebigfluke.com/2013/11/public-key-crypto-math-explained.html

