
In the browser JavaScript ecosystem, JavaScript modules depends on import and export
statements to load and export ES modules.

In addition, ES module is the official standard format to package JavaScript code for reuse.

On the other hand, Node.js, supports the CommonJS module format by default. CommonJS module
load using require() and the variables and functions export from a CommonJS module with
module.exports

Why the two different standards? Good question. CommonJS module is built into Node.js before ES
module were introduced.

There are two ways you can enable ES modules in Node.js.

You can simply change the file extension from .js to .mjs to use ES module syntax to load and
export modules:

You can add a "type": "module" field inside the nearest package.json file. By including that field,
Node.js will treat all files inside the package as ES modules instead, so you wouldn't have to
change to .mjs extensions.

All about modules

Two different standards

Node.js support ES module

First way

// util.mjd

export function add(a, b) {

	return a + b;

}

// app.mjs

import {add} from './util.mjs'

console.log(add(1, 2)); // 3

Second way (better way)

You will be using import/export for frameworks like React and Vue.js, the framework themselves
will use a transpiler to compile the import/export syntax down to require anyway.

What is a module? A module is just a file, one script is one module. Simple.

Modules can load each other using export and import directives to give and exchange
functionality between different files.

export : This keyword labels variables and functions that should be accessible from
outside
import : This keyword allows you to import functionality that are exported by other
modules.

Another file can import it and use it

Any import statement must get either a relative or absolute URL. Modules without any path are
called bare modules:

They are not allowed in browser, but Node.js or bundle tools allow such bare modules

How frameworks deal with this

Module

Example

// sayHi.js

export function sayHi(user) {

	console.log("Hello " + user)

}

// main.js

import {sayHi} from './sayHi.js'

console.log(sayHi); // function

sayHi("Ricky"); // Hello Ricky

Base modules

import {sayHi} from 'sayaHi'

Build tools

Using a build tool like Webpack will allow you to use bare modules. It also does code optimization
and remove unreachable code.

Export and import directives have many syntax variants and we will go over them.

Here is how you export along with the declaration of variables and functions:

Here is how you export if you already have the declaration of variables and functions already:

Export/import

Export before declaration

export let months = [1, 2, 3, 4]; // exporting an array

export const MODULE_CONST = 69; // exporting a const

// exporting a class

export class User {

	constructor(name) {

 	this.name = name;

	}

}

// exporting a function

export function foo() {

	console.log("fooing around");

}

Export after declaration

let x = 69;

function sayHi() {

	console.log("Hi");

}

function sayBye() {

	console.log("Bye");

}

export {x, sayHi, sayBye}; // you pass in a list of exported variables or functions

When you export a variable or function you can also choose a different name to export under, so
that the modules that will be importing will use the name that you choose

Typically there is two types of modules

1. Module that contain a library like bunch of functions
2. Or modules that declare a single entity which exports say only a class for others to use

The second approach is mostly done. And to do it there is the syntax export default to export a
default export, and there is only one default export per file, one thing that you can defaulty export
per module.

Export as

// say.js

export { sayHi as hi, sayBye as bye};

// main.js

import {hi, bye} from './say.js'

hi();

bye();

Export default

// user.js

export default class User {

	constructor(name) {

 	this.name = name;

	}

}

// or equivalent

class User {

 	constructor(name) {

 	this.name = name;

 }

}

export {User as default};

When you are importing the default export you do not need any curly braces and it looks nicer.

On the other hand, named exports needs curly braces, and default export do not need them

Usually you can put a list of what you want to import in curly braces

But if there is a lot to import you can import everything as an object using import * as <obj>

You can also pick an alias for the functions or variables that you have imported using as

import User from './user.js' // not {User} just User

import {default as User} from './user.js' // this is the second way

new User("ricky");

When you are using default exports, you always choose the name when you are importing, it
doesn't matter what the name is. However, naming it different things might end up
confusing some team members, so the best practice is to name the default export the same
as the file names.

import User from './user.js'

import LogicForm from './logicForm.js'

import func from '/path/to/func.js'

Import

import { sayHi, sayBye, x} from './say.js'

Import *

import * as say from './say.js'

say.sayHi();

say.sayBye();

say.default; // to access the default export if you export everything *

Import <> as

import {sayHi as hi, sayBye as bye} from './say.js'

hi();

bye();

The default keyword is used to reference to the default export

Re-exporting syntax export ... from allows you to import things and immediately export them like
so:

Why would you do this? Well imagine you are writing a package: folder with lots of modules and
some under a different folder because they are just helper functions. So your file structure could be
like so:

You would like to expose the package functionality via just a single entry point, i.e. if someone
wants to use your package they can just import only from auth/index.js .

Instead of doing it from the exact file that it was exported. We can just let the main file to export all
the functionality that we want to provide in the package.

Other programmer who want to use the package shouldn't need to look into the internal structure,
search for files inside the package folder for the exact one to import. They can just look at one
main file to import from, while keeping the rest hidden.

This is where re-exporting can be used to do this

Import default export along with name export

import {default as User, sayHi} from './user.js'

Re-exporting

export {sayHi} from './say.js' // re-export sayHi

export {default as User} from './user.js' // re-export the default export under User name

auth/

 index.js

 user.js

 helpers.js

 tests/

 login.js

 providers/

 github.js

 facebook.js

 ...

import {login, logout} from 'auth/index.js'

Now user can just do import {login} from 'auth/index.js'

The syntax export ... from ... is just a shorter notation for such import-export:

If you are re-exporting a default export using the shorter notation, you must do it via export
{default} from './file.js' and if you are planning to export other named exports from the same
file you would have to do export * from './file.js' .

Basically, for default exports you would have to handle it separately, you cannot just
export * , it will only handle named exports and not default exports.

// auth/index.js

// import login/logout and export them

import {login, logout} from './helpers.js'

export {login, logout}

// import default as User and then export it

import User from './user.js'

export {User}

import {login, logout} from './helpers.js'

export {login, logout}

import User from './user.js'

export {User}

// Equivalent to

export {login, logout} from './helpers'.js'

export {default as User} from './user.js' // This is default re-exporting

Revision #2
Created 29 December 2022 23:05:45 by Tamarine
Updated 30 December 2022 14:59:45 by Tamarine

