
Every object have a special hidden property [[Prototype]] it is either null or a reference to
another object.

Whenever you read a property from object and if it is missing, JavaScript will automatically take it
from the prototype.

One of the way to set the prototype is to use the special name __proto__ :

If animal has any useful method, then since it is a prototype to the rabbit it is able to call it
directly as well!

All about prototypes

Prototype inheritance

Setting prototype

let animal = {

	eat: true

};

let rabbit = {

	jump: true

};

rabbit.__proto__ = animal;

console.log(rabbit.eat); // true, taken from the prototype animal

console.log(rabbit.jump); // true

let animal = {

 eats: true,

 walk() {

 console.log("Walking");

 }

};

let rabbit = {

The only rules on assigning prototype is that there should be no circular references, and the value
of __proto__ should be either an object or null all other types are simply ignored and have no
effect.

What if we did something like this?

 jumps: true,

 __proto__: animal // Another way of setting the prototype

};

// walk is taken from the prototype

rabbit.walk(); // Walking

Limitation

Modifying prototype state

let user = {

	name: "Ricky"

 last: "Lu"

 get fullName() {

 	return this.name + " " + this.last;

	}

 set fullName(value) {

 	[this.name, this.last] = value.split(" ");

	}

};

let admin = {

	__proto__: user,

 isAdmin: true

};

console.log(admin.fullName); // Ricky Lu, this works as expected

admin.fullName = "Another person"; // Now what happens to user.name and user.last?

admin.fullName // Another perons

user.fullName // Ricky Lu, it stays! The state of user is protected

Even if you do something like this:

This behavior is needed because you wouldn't want to modify the prototype's state if multiple
object has it as it's prototype, the changes will be untraceable and should be on the object itself
not prototype!

Using for...in it will iterate over the inherited properties as well if it is enumerable, however,
Object.keys(obj) will only return the keys this object has itself, not inherited ones:

As you can see if you tried to modify the admin's name by calling the prototype's setter
function the state change will be enforced on admin and not user ! Even though you are
calling user 's setter method. This is because this always binds to the object that it is called
on, and in this case, it is assigning admin.name and admin.last to be "Another" and "person"
respectively. user is unchanged.

let user = {

	name: "Ricky"

 last: "Lu"

};

let admin = {};

admin.name = "Another";

admin.last = "person";

user -> Will still be "Ricky Lu"

admin -> Will be "Another person", because it is assigning name and last property to admin

for...in loop

let animal = {

 eats: true

};

let rabbit = {

 jumps: true,

 __proto__: animal

};

// Object.keys only returns own keys

console.log(Object.keys(rabbit)); // jumps

These are the built-in prototypes that all of the objects inherits from.

This is the default prototype that any object created inherits from. And itself's prototype is just
null because there is no one above it.

This object has some default method that all object contains toString, hasOwnProperty,...

Return true/false depending on whether or not the object has that particular property itself, and
not inherited.

These are the other prototypes that some of the objects that you create inherits from such as
Arrays, Functions, and Numbers.

You can verify that they indeed are those prototype by comparing say [1, 2].__proto__ ==
Array.prototype it will be equal to true .

// for..in loops over both own and inherited keys

for(let prop in rabbit) console.log(prop); // jumps, then eats

Native prototypes

Object.prototype

hasOwnProperty(prop)

Array.prototype/Function.prototype/Number.prototype

Primitives aren't objects, but somehow we are able to access methods on them, how does that
work? Well when you try to access their methods a temporary wrapper objects are created using
the built-in constructors String, Number, Boolean . They provide the methods and then disappear.

The process of creation are invisible to us and engines optimize them out mostly.

null and undefined have no object wrapper, so they have no methods or properties.

If you set a property to an object and marked it as enumerable: false , and you console.log the
object, that property will not show up because it is not iterated over using for...in loop!

When writing constructor functions, i.e. functions that are called with new F() , where F is a
constructor function we can take advantage and use F.prototype to do prototype inheritance as

Primitives

One of the interesting thing that you can do with primitive prototypes is that you can add
some custom properties or method that can be used by all primitives. String.prototype.foo
= 5; will allow all strings to access a foo property.
let x = 5; you can do x.foo to get 5.

Interesting aside

F.prototype

https://wiki.tamarine.me/uploads/images/gallery/2022-12/T2simage.png

well.

If we assigned an object to F.prototype then when new F() is invoked, the object that is created
will have its __prototype__ pointed to the object that we have assigned. So it is another way that
we can do prototype inheritance, instead of setting it manually after the object is created using
{...} .

This only concerns with constructor methods, nothing else.

.__proto__ is an old way of letting you access and set [[prototype]] and its usage is generally
discourage.

The modern way of setting [[prototype]] is to use the methods:

Object.getPrototypeOf(obj) : This returns the prototype of the object, same as doing
.__proto__ getter
Object.setPrototypeOf(obj, proto) : This sets the prototype of the obj to be proto , same
as doing .__proto__ setter
Object.create(proto, [descriptors]) : Allows you create an object with the specified
prototype and optionally descriptors, this is the same as doing {__proto__: ... }

let animal = {

	eat: true

};

function Rabbit(name) {

	this.name = name;

}

Rabbit.prototype = animal;

let rabbit = new Rabbit("White"); // rabbit.__proto__ == animal

console.log(rabbit.eat); // true

Keep in mind that F.prototype is only used when new F() is called, so if you decide to
change it prototype after you created the object, future object created using the constructor
function will have the newer prototype, but existing object keep the old one.

Modern way of setting [[prototype]]

True dictionary

The bad usage of .__proto__ becomes apparent if we decides to keep a key-value pair mapping
using object. If we allow the user to enter any kind of key-value pair mapping and if they decides to
enter __proto__ and map to say 5 , it would be invalidated, because using __proto__ you can only
assign it another object or null . This isn't the behavior that a dictionary would want right? To fix
this we can use Map or a real empty object, an object with no inherited prototype to begin with to
inherit the setter and getter for __proto__ via Object.create(null) .

Now we are able to do:

let empty = Object.create(null); // No prototype inherited

empty.__proto__ = 5;

console.log(empty.__proto__); // 5

Revision #5
Created 27 December 2022 00:00:30 by Tamarine
Updated 27 July 2023 01:52:48 by Tamarine

