
async keyword is placed before a function like so:

It basically make your function always returns a promise. If you didn't return a promise explicitly in
the function they will be wrapped in a resolved promise automatically. The above async function is
equivalent to the one below:

Async function are thenable because they return a promise object:

You can only use await inside an async function, using it outside of an async function will result in
a syntax error

The keyword await will make JavaScript wait until that promise settles and return the result of the
resolved promise object as the value:

Async and await

async keyword

async function f() {

	return 1;

}

function f() {

	return Promise.resolve(1);

}

async function f() {

	return 1;

}

f().then(console.log); // prints out 1

It just ensures that the returned value is a promise 100% and enables await in the function
body, that is all. Function is still executed as a normal function!

await keyword

async function f() {

	let promise = new Promise((res, rej) => {

await basically makes the function wait at the promise that you used it on and wait until the
promise settles before moving on.

It will wait for another promise to resolve before moving on with its own execution.

The waiting doesn't cost any extra CPU time because since the function is marked asynchronous it
can move onto executing other part of the code before resuming the execution after the promise
you are awaiting is resolved.

If the promise resolves normally, await promise returns the result. But in the case of rejection, it
will throw the error:

You can handle that error using try...catch

 	setTimeout(() => res("done"), 1000)

	});

 let result = await promise;

 console.log(result); // prints out done!

}

f();

Using await is just a more elegant syntax of executing .then , you wait until the promise is
resolved before moving on. It is easier to read and write.

But you can only use await in a async function!

Error handling

async function f() {

	await Promise.reject(new Error("oops"));

}

// Is equivalent to

async function f(){

	throw new Error("oops");

}

async function f() {

If you don't handle it using try...catch inside the body of the function, then the async function
itself will become rejected, and you can handle it by adding .catch to handle it.

If you forget .catch then you will get an unhandled promise error.

If you are going to use async/await then you will rarely need to write promise.then/catch explicitly.
async/await are based on promises.

Keep in mind that await doesn't work outside of non-async functions.

You would just have to treat wait as a promise object, remember async functions always return a
promise object, and then just have to .then it to use the result after it is resolved.

 try {

 let response = await fetch('http://no-such-url');

 } catch(err) {

 console.log(err); // TypeError: failed to fetch

 }

}

f();

Why they are needed

Example of call async from non-async
async function wait() {

 await new Promise(resolve => setTimeout(resolve, 1000));

 return 10;

}

function f() {

 // How do we call wait() and print out the result 10?

 // simple

 wait().then(val => console.log(val));

}

Revision #3
Created 29 December 2022 21:08:48 by Tamarine
Updated 29 December 2022 23:04:32 by Tamarine

