
Besides using a constructor function there is a more advance object oriented programming
construct called class in JavaScript. The basic syntax is as follows:

To utilize this class that you have just created you would use the same syntax as constructor
functions: let x = new MyClass() to create a new object with all of the methods listed.

The constructor() method is automatically called by new and you would just do the same thing as
a constructor function.

When you write class User {...} what it happens underneath is that

1. Creates a function named User , and that is the result of the class declaration. The
function code is taken from the constructor method, assume empty you didn't write such
method

2. Stores class method that you wrote inside the class in User.prototype just like all the
other native prototypes, i.e. String.prototype, Array.prototype, Number.prototype

So all the method that you call on the instantiated object will be on the taken from
YourClass.prototype.<methods>

Classes in JavaScript

Class basic syntax

class MyClass {

	constructor() {}

 method1() {}

 method2() {}

}

What happens underneath

Not just a syntactic sugar

https://wiki.tamarine.me/uploads/images/gallery/2022-12/J6Bimage.png

Many people say that the class declaration is a syntaxsyntactic sugar on top of constructor
function. Yes, but there are still some differences:

1. The constructor created by class declaration must be invoked using new unlike
constructor method where you can invoke it directly, even though it won't work properly

2. Class methods are non-enumerable, compared to constructor function's methods
3. Code inside class declaration are always use strict

Like function expression you can also store class declaration into a variable or as something you
would returned from a function, basically be part of another expression.

You can also provide getters and setters as well

You can also add properties to the instances of class that you created.

These class fields are set on individual objects not under Class.prototype , so if you change one on
one object, the other's class fields aren't affected.

Class expression

let User = class {

	sayHi() {

 	console.log("Hi");

	}

};

Getters/setters

Class fields

class User {

	name = "John";

 sayHi() {

 	console.log(`Hi I am ${this.name}`)

	}

}

new User().sayHi(); // Hello, John!

Revision #2
Created 27 December 2022 20:31:58 by Tamarine
Updated 27 July 2023 01:53:02 by Tamarine

