Conditional and Logical Operator

Ternary Operator

let accessAllowed;

if (age > 18) {

accessedAllowed = true;
}
else {

accessedAllowed = false;
}

// Can be simplified into just

accessedAllowed = age > 18 ? true : false;

| (OR)

Returns true if one of the boolean value is true.

There is an "extra" feature of JavaScript for the OR operator.

result = valuel || value2 || value3;

Given the above code snippet, the OR operator will go from left to right evaluating each
expressions, and for each value it will convert it into a boolean, if the result is true it will stop and
return the original value of that expression. if all of the expressions has been evaluated, and all of
them are false then return the last value.

Return the first truthy value or the last one if none were found.
let firstName = "";
let lastName = "";

let nickName = "SuperCoder";

alert(firstName || lastName || nickName || "Anonymous"); // SuperCoder

&& (AND)

Return true only if both operand are true.

Just like OR there is also this "extra" feature from JavaScript for AND operator.

result = valuel && value2 && value3;

It will evaluate left to right as well. It will convert each value to a boolean, if the result is false
then it will stop and return the original value. If all of the values are evaluated and are all true,
then return the last value.

Return the first falsey value or the last one if none were found.

alert(1&& 0); // 0
alert(1&& 5); // 5

| (NOT)

It first convert the operand to a boolean type, then return the inverse of that value.

result = !value;

Double NOT can be used to convert value to boolean conversion.

Nullish coalescing ??

A value is defined when it's neither null or undefined .
The result of a ?? b is

e if a is defined, then a
e if a isn't defined, then b

Basically the ?? operator will return the first argument if it's not null/undefined , otherwise, the
second one.

This is just a shorter syntax for writing
result = (a !== null & a !== undefined) ? a : b;

// Is the same as

result = a ?? b;
You can also use ?? to pick the first value that isn't null/undefined .

As opposed to ||, it returns the first truthy value! This results in a subtle difference:
let height = 0;

alert(height || 100); // 100
alert(height ?? 100); // 0

We might only want to use a default value (in this case is 100), when the variable is null/undefined
. However, if you use || you will be picking the first truthy value, and since 0 is considered falsey
you will be skipping the default value, as opposed to the ?? operator, which does what we want.
Only use the 100 default value, if it is null/undefined .

Revision #2
Created 17 December 2022 20:58:04 by Tamarine
Updated 18 December 2022 16:14:31 by Tamarine

