
A special syntax to let us unpack either array or object into different variables

The way the destructuring works is that it will assign the first element to the first variable that you
gave, second element to the second variable that you gave, and so on...

You can ignore elements that you don't want by not putting a variable for that particular element.
For example, if you don't want to assign the second element and the fourth element of the array:

You can actually use any assignable on the left side, even object properties!

Destructuring assignment

Destructuring assignment

Array destructuring

let arr = ["Ricky", "Lu"]

let [firstName, lastName] = arr;

console.log(firstName); // "Ricky"

console.log(lastName); // "Lu"

let arr = ["Ricky", "Lu", "Xin", "Wang"];

let [first, , third] = arr;

console.log(first); // Ricky

console.log(third); // Xin

This kind of assignment works with any iterable, you can use it on Set , and Map since
destructuring assignment is actually a syntax sugar for calling for ... of loops.

let user = {};

[user.name, user.surname] = ["Ricky", "Lu];

Swapping variable

You can use destructuring assignment to swap two variable's value without using an intermediate
variable

Normally, if you are destructuring say only one value out of the entire array, the rest of the values
are just ignored. You can actually gather the rest of the values into a variable as well using the ...
syntax:

It will fill in the named variable first, then anything that's left over will be stored into the rest
variable as an array. Even if there are no items left, the rest variable will remain an empty array.

The rest assignment must also be the last assignment in a destructuring statement!

When doing destructuring assignment if you use more variable names than the number of
elements in the array, the variables that aren't able to receive a value will become undefined .

However, you can assign a default value for them if they didn't receive a value from the array.

let a = 5;

let b = 100;

[b, a] = [a, b]; // Swaps a's value with b's value

The rest '...'

let [name1, name2, ...rest] = ["Ricky", "Xin", "Rek'sai", "Kai'sa"];

name1 // "Ricky"

name2 // "Xin"

rest // ["Rek'sai", "Kai'sa"]

Default values

let [firstname="Anonymous", lastname="Anonymous"] = ["Julius"];

firstname // "Julius" because firstname was able to receive a value

lastname // "Anonymous" because there is no more value left for lastname

You can also use function calls for default values. They will only be called if the variable
didn't receive a value.

Object destructuring

Just like you can do array destructuring you can also destruct object, the syntax is a little bit
different.

If the variable that you are assigning the property of the object into have the same name as the
property name then you can just write the property name on the left.

However, if you decide to assign the property to a different variable name say name property into
just nm , then you would have to do a little bit more:

You put the variable name that you are actually assigning to on the right side of the : , left side is
the property name.

You can also use default values as well!

Again you can also use the rest variable to assign the rest of the property that you are not
assigning directly to a variable into the rest variable. The rest variable becomes another object
with those left over properties that you didn't assign directly.

let {var1, var2} = {var1: ~, var2: ~};

let {name: nm, height} = {name: "Ricky", height: "5.9"};

let {name: nm, height=500} = {name: "Ricky", age: 50};

// name -> nm

// height -> 500

The order that you put the property assigning does not matter

Rest pattern with object destructuring

let options = {

	title: "Menu",

 height: 200,

 width: 100

};

let {title, ...rest} = options;

// titles -> "Menu"

// rest -> {height: 200, width: 100}

With array destructuring assignment you can declare the variable that you are using for the
assigning before you actually do the assigning:

However, with object destructuring you have to do a little bit more, using the same syntax it would
not work!

This is because JavaScript treats {...} as a code block, thus it will try to execute it. To fix this you
have to wrap the expression in parentheses:

If the object that you are destructuring have nested object, then you can extract the nested
object's property out as well. You just need to do another layer of destructuring with the same
syntax:

Gotcha if there's no let

let item1, item2;

[item1, item2] = [1];

console.log(item1, item2); // item1 -> 1, item2 -> undefined

let title, width, height;

// error in this line

{title, width, height} = {title: "Menu", width: 200, height: 100};

let title, width, height;

// error in this line

({title, width, height} = {title: "Menu", width: 200, height: 100});

Nested destructuring

let nested = {

 another: {

 name: "Inner me",

 age: 30,

 address: "6601231"

 },

 name: "Outer me",

 age: 10

}

let {another: {name: innerName, ...innerRest}, name: outerName, age: outerAge} = nested;

If you are going to write a function with many optional parameters, it might looks something like
this:

Which doesn't look very nice, and when you are calling the function you will have to remember
what is what.

To help resolve this we can use destructuring assignment in the function parameter

Now when you are going to call the function, you provide in an object of parameters. If you don't
want to provide any then you can just pass in an empty object.

You can make empty object call even better by assigning a default value to the object
destructuring assignment.

// innerName -> Inner me

// innerRest -> {age: 30, address: "6601231"}

// outerName -> Outer me

// outerAge -> 10

Smart function parameters

function showMenu(title = "Untitled", width = 200, height = 100, items = []) {

 // ...

}

function showMenu({title="Untitled", width=200, height=100, items=[]}) {

	// Body of the function

 // title, width, height, items all have default vlaues if you didn't specify it

}

// Calling showMenu

showMenu({}); // With no parameter

showMenu({width: 6969}); // With one optional parameter

function showMenu({title="Untitled", width=200, height=100, items=[]} = {}) {

	// Body of the function

 // title, width, height, items all have default vlaues if you didn't specify it

}

// Calling showMenu

showMenu(); // With no parameter

showMenu({width: 6969}); // With one optional parameter

Keep in mind that you are still allowed to have other parameter besides the object
destructuring assignment

Revision #1
Created 23 December 2022 19:08:09 by Tamarine
Updated 23 December 2022 20:56:04 by Tamarine

