
To declare a function follow the syntax:

The function can have access to outer variable, as well as modifying it.

The outer variable is only used if there is no local one, if there is a same-named variable that is
declared inside the function then it shadows the outer one. The outer one is ignored.

JavaScript's function parameter are passed by value, meaning a copy of the argument is copied
into the parameter.

If you call a function without providing the arguments required, then the corresponding value for
those parameters becomes undefined .

You can provide default values in the function declaration if the argument is not passed for that
parameter then it will use the default values. It is also used if the argument is specified but is equal
to undefined .

Call foo("Ann") will result in "Ann: hello world"

Call foo("Ann", undefined) will also result in "Ann: hello world"

Functions, function expression,
arrow function

Function Declaration

function function_name(parameter1, parameter2, ..., parameterN) {

	// Body of the function

}

Default values

function foo(from, text="hello world") {

	console.log(from + ": " + text);

}

Return Value

A function without return or without returning a explicit value returns undefined , just like how
Python returns None .

Another way of creating a function is via function expressions. It let you create a new function in
the middle of any expression:

The function creation occurs in the middle of a assignment expression thus it is a function
expression!

Function expression should have a semicolon at the end because it is an assignment statement,
which is good practice.

If you just write a function expression without storing it into a variable, then that is an anonymous
function. It is only accessible to the context that it is passed into, and not anywhere else.

A function expression is created when the execution reaches it and is usable only from that
moment and onward.

On the other hand, a function declaration can be called earlier than it is defined, and it will still
work.

Function expressions

let foo = function() {

	console.log("foo!");

};

foo(); // Print out foo!

Functions in JavaScript are higher order, meaning that you can pass a function as an
argument and return a function as a return value.

Anonymous functions

function run_callback(callback) {

	callback();

}

run_callback(function() {console.log("hi im callback!")});

Function declaration vs function expression

Global function declaration is visible in the entire script, no matter where it is.

However, function expression are created when execution reaches them, which means line number
1 wouldn't know what foo is at that point.

A much more concise way of creating a function compared to function expression is via arrow
functions.

Here is how one looks in function expression vs arrow function:

This arrow function accepts n arguments and then evaluates the expression on the right side and
then return the result.

In this case, both func does the same thing, but the arrow function on line 5 is much more concise
in that it will evaluate arg1 + arg2 and then returns it without you having to specify a return.

If the arrow function you are writing only have one argument then you can skip the parentheses
around the parameter. But having it makes it much more readable.

foo(); // fooing!

function foo() {

	console.log("fooing!");

}

foo(); // error

let foo = function() {

	console.log("fooing!");

}

Arrow function

let func = (arg1, arg2, ..., argN) => expression;

let func = function(arg1, arg2) {

	return arg1 + arg2;

}

let func = (arg1, arg2) => arg1 + arg2;

One argument

If the function takes no argument, the empty parentheses must be present.

You can use them the same way, for example, to create anonymous callback functions:

If your arrow function's logic is longer than one line, then you can use multi-line arrow functions:

This is still a arrow function but you can do multiple lines now. However, by adding brackets to
denote multi-line arrow function you now must provide an explicit return statement. Otherwise, the
arrow function will just return undefined just like a regular function.

Unless you don't need the multi-line arrow function to return a value, then you wouldn't need the
return statement.

let double = n => n * 2;

No argument

let foo = () => console.log("fooing!");

Function expression & arrow function

function do_callback(callback) {

	callback();

}

do_callback(() => { console.log("doing callback") }); // Using arrow function

do_callback(function() { console.log("doing callback") }); // using function expression

Multi-line arrow functions

let sum = (a, b) => {

	let result = a + b;

 return result;

}

Revision #2
Created 18 December 2022 19:32:25 by Tamarine
Updated 18 December 2022 22:27:30 by Tamarine

