
Miscellaneous function
topics

Rest parameters and spread syntax
How do we make a function take in an arbitrary number of arguments? Simple we use the ... rest
operator in the function header.

When you prefix a parameter with ... you can pass in an arbitrary number of arguments into the
function and it will all be collected into an array that's stored into the parameter args .

You can also mix rest parameters with normal parameters like so

In this case, the first two parameter will be stored into firstName and lastName respectively, and
any further parameter that you pass in will be stored into extra as an array of parameters.

Spread Syntax

function sum(...args) {
	let sum = 0;
	for (let arg of args) sum += arg;
 return sum;
}

function showName(firstName, lastName, ...extra) {
	console.log(firstName, lastName);
 console.log(extra);
}

showName("Ricky", "Lu", 30, 40, 50);

Keep in mind that the rest parameter must be at the end when you use it. You cannot have
a function like so
function f(arg1, ...rest, arg2) this will be a syntax error

On the other hand, you can also unpack the values from an array or any iterable into a function.
For example:

This is much like the opposite of doing the reverse of rest parameter. We want to spread the values
from an array into the parameter of a function.

When ... is used in a function call it expands the iterable object into the list of arguments.

You can spread multiple iterable into a function

Merging array
You can also use the spread syntax to merge arrays together, instead of using arr.concat

Lexical environment
Okay this is gonna just be a brief summary of what lexical environment is.

Every JavaScript script have something called a lexical environment object that is internal. It
consists of: Environment record (all of the local variables and methods), and a reference to the

// instead of writing
let arr = [3, 5, 1];

console.log(Math.max(arr[0], arr[1], arr[2])); // Too long, and if there are hundreds of values, we are not gonna
do this

console.log(Math.max(...arr)); // Much better, this unpacks the arr

let arr1 = [1];
let arr2 = [2, 3, 4, 5, 6];

function foo(a, ...rest) {
	console.log(a, rest);
}

foo(...arr1, ...ar2); // prints out "1 [2, 3, 4, 5, 6]"

let arr = [3, 5, 1];
let arr2 = [8, 9, 15];

let merged = [...arr, ...arr2]; // becomes [3, 5, 1, 8, 9, 15];

outer lexical environment.

When you declare a global variable or global function it is stored in the global lexical environment
that is associated with the whole script.

Here in this example above, phrase is a global variable and hence its record is stored in the global
lexical environment. The global lexical environment does not have reference to a outer lexical
environment because it is the most outer one, hence it is just null .

Variable declaration and function declaration
When you declare a variable, it is available in the lexical environment immediately but the value it
has is uninitialized from the beginning, and as the script execute to the point where it is initialize,
that value is updated.

On the other hand, for function declaration (not function expression or arrow functions), they are
available immediately become ready-to-use functions. It doesn't have to wait until the line the
function becomes defined to be initialized. This is why we are able to call the function before the
function declaration!

Inner and outer lexical environment
When you invoke a function it creates a new lexical environment to store the local variables and
parameter of the function call. Every new function invocation will create a new lexical
environment!

Here in this example, invoking say creates a new lexical environment and has the parameter
information in it. It has the reference to the outer lexical environment, which in this case is the
global lexical environment.

When the function wants to access a variable, the inner lexical environment is searched
first, then the outer one, and recursively back up until the global lexical environment.

If the variable is not found anywhere, then it is an error in strict mode , without strict mode then
assignment to a non-existing variable will be automatically added to the global lexical

https://wiki.tamarine.me/uploads/images/gallery/2022-12/image.png
https://wiki.tamarine.me/uploads/images/gallery/2022-12/hrGimage.png

environment.

Returning a function
If you wrote a function that returns another function say:

In this case makeCounter() creates a lexical environment that holds the variable count , then it
returned a function that will increment the outer count . How does it do that? When counter is
invoked later on, it will again create a new lexical environment with nothing in it because it has no
variables but rather referring to the outer one. Since it is created in the lexical environment in
makeCounter the reference that the inner function points to will be makeCounter 's lexical
environment and it has the count . Then when it tries to increment count it will be incrementing the
count under makecounter 's lexical environment and it works out!

Closure
Now this is where closure comes in. A closure is a function that is able to remember it's
environment context that it was created in. It remembers the outer variable and is able to access
them. Some languages don't support closure, and if it doesn't then what we have just talked about
isn't possible.

All JavaScript functions are closure, is able to resolve those outer variables that it used, and when
those variables goes out of scope it is still able to remember them, have closure per say. The only
exception is the new Function syntax, it is not closure.

Global object
The global object provides variables and functions that are available anywhere, by default it stores
the ones that are built into the language or the runtime environment.

For browsers it is named window , for Node.js it is global , but it is recently been renamed into
globalThis

function makeCounter() {
	let count = 0;

 return function() {
 	return ++count;
	};
}

let counter = makeCounter();
counter(); // count becomes 1
counter(); // count becomes 2

You can access the property of global object directly. In addition, all var variables are becomes the
property of the global object. Variables without let or var are implicitly var hence they become
the property of the global object as well! (Without strict mode that is. With strict mode, it is an
error)

Usage of global variable
It is generally discouraged, there should be as few global variables as possible, with access via the
global object that is.

The new Function syntax
You can create a new function via a string:

For example:

Now using this way to create function it is not closure. Meaning that it cannot access any outer
variables! This is the only exception that functions aren't closure, in all other cases functions in
JavaScript are closure.

Named function expression
When you are writing a function expression you don't normally give it a name, but the thing is you
can, so writing this is perfectly valid:

But what does this achieve? By adding a name to the function expression it did not become a
function declaration, it is still a function expression!

let func = new Function([arg1, arg2, ...argN], functionBody); // Both the args and functions should be strings

let sum = new Function('a', 'b', 'return a + b');
let sum = new Function('a, b', 'return a + b');
// Both are equivalent.

sum(1, 2) // will be 3

let sayHi() = function func(who) {
	console.log(`Hi ${who}`);
};

sayHi("John"); // Hi John

You can still call the function as it is using sayHi . However, by adding func name we are able to let
the function calls itself internally, and it is not visible outside of the function.

We use func internally instead of sayHi is because the value of sayHi could be changed down the
line, and if it is changed, to say a number, then the reference inside would not be valid anymore.

Scheduling
setTimeout/setInterval
Both follows the function header:

func : Refers to the function to execute
delay : The number of milliseconds to wait before the code specified is executed, by
default is 0 so execute immediately.

let sayHi = function func(who) {
	if (!who) {
 	func("Anonymous");
 }
 else {
 	console.log(`Hi ${who}`);
 }
}

sayHi(); // Hello, guest!

let sayHi = function(who) {
 if (who) {
 alert(`Hello, ${who}`);
 } else {
 sayHi("Guest"); // Error: sayHi is not a function
 }
};

let welcome = sayHi;
sayHi = null;

welcome(); // Error, the nested sayHi call doesn't work any more!

setTimeout/setInterval(func | code, [delay], [arg1], [arg2], ...)

arg1, arg2,... : The arguments for the function that you specified

The difference between setTimeout and setInterval is that setTimeout will only execute the function
once after the specified delay, while setInterval will execute that function regularly after every
specified delay . So if you write setInterval(waveHello, 1000) this will wave hello after every second.

clearTimeout/clearInterval
Use these two functions to delete the function that is going to be called after you do
setTimeout/setInterval . You will have to pass the "timer identifier" that is returned from calling
setTimeout/setinterval , in order to cancel the timer handler.

Nested setTimeout
A better way of doing interval code execution is via nested setTimeout

Recalling from named function expression that an function expression can be named and itself can
refer to it internally. Now the first function execution will occur after 2 seconds, then it will run the
body of the tick function, it will do the work and schedule itself to run 2 seconds again later.

Why is this better? It gives us a finer control on when to schedule, instead doing it every 2 seconds,
we can control the time of the interval inside the tick function based on say CPU-usage, or how
much work is given. We can do it every 10 seconds, 20 seconds, or 60 seconds so a variable
interval is what this is trying to emulate.

In addition, nested setTimeout guarantees the fixed delay. Since setInterval the function execution
can take up the delay, thus making the interval inaccurate.

Zero delay setTimeout
There is actual a usage for setTimeout(func, 0) . This schedules the execution of the function as soon
as possible, but the scheduler is invoked only after the current executing script is complete. Hence
the function is scheduled to run right after the current script is finished.

function waveHello() {
	console.log("I am waving hello!")
}

setTimeout(waveHello, 1000); // I am waving hello! After one second

setTimeout(function tick() {
	console.log("Doing work every regularly");
 setTimeout(tick, 2000);
}, 2000);

Function binding
If you decide to somehow pass an object's method as a callback into say setTimeout , you will lose
the this keyword in the method

The method that was passed into setTimeout didn't have a receiver when it was invoked. So again if
the method that you invoked doesn't have a receiver, in browser this will be binded to window
object, and for Node.js it will be the timer object, but not that relevant.

Solution 1: Wrapper
We can solve this by wrapping the method that we actually want to invoke in another function call
like so

Now because of closure, it is able to resolve this to be the appropriate user object and this will be
fine.

However, this solution will fail if the user object somehow changed before the callback is executed,
then it will be invoked on the changed value, not the old one anymore.

setTimeout(() => console.log("World"))console.log("hello!");// Prints out hello! World

let user = {
	firstName: "John",
 sayHi() {
 	console.log("Hi I am " + this.firstName);
 }
};

setTimeout(user.sayHi, 1000); // This will print Hi I am undefined

let user = {
	firstName: "John",
 sayHi() {
 	console.log("Hi I am " + this.firstName);
 }
};

setTimeout(function() {
 user.sayHi()
}, 1000); // This will print Hi I am undefined

Solution 2: bind
To solve the issue that was discussed previously where if the object is somehow changed before
the callback is executed, it will be executing callback with the updated object, we can use the bind
function to fix this.

The result of calling bind on a function is another function that has the same body but with
this=context fixed. For example:

The returned function will have the same spec as the original function the only thing that changed
is that this is fixed to whatever object that you have provided.

Using bind we can solve the problem we have just discussed by fixing the this to be that original
object, it won't matter if the object changed down the line:

let boundFunc = func.bind(context);

let user = {
	firstName: "John"
};

function func() {
	console.log(this.firstName);
}

let funcUser = func.bind(user);
funcUser(); // John, because this is set to be user.

let user = {
 firstName: "John",
 sayHi() {
 console.log(`Hello, ${this.firstName}!`);
 }
};

let sayHi = user.sayHi.bind(user); // (*)

// You can run it without an explicit receiver
sayHi(); // Hello, John

setTimeout(sayHi, 1000); // Hello, John

Partial functions
With the bind method you can also fulfill the partial parameter, here is an example

We can partially fill out the function that we are binding with some predetermined parameter, in
this case a=2 , then the user only need to fill out one more parameter b in this case and the result
will be returned.

You can also make methods that are partial as well if you so to choose, this is done by using the
func.call method which invokes the method with the option to provide the this context. Then you
can just return a function that will call the method with the predetermined parameters, and let the
user provide additional parameter.

// Even if user is changed to something else, it will still do Hello, John
user = {};

After you have bind an object, it cannot be changed again! Meaning you cannot do .bind
again on the function that was returned.

function mul(a, b) {
	return a * b;
}

let double = mul.bind(null, 2);

double(3) // 6
double(8) // 16

function partial(func, ...argsBound) {
 return function(...args) { // Returns a function that is partially filled. Let user put in additional args if needed
 return func.call(this, ...argsBound, ...args);
 }
}

let user = {
 firstName: "John",
 say(time, phrase) {
 alert(`[${time}] ${this.firstName}: ${phrase}!`);
 }
};

// add a partial method with fixed time

// takes in the function to partially fill, and the args to prefill with
user.sayNow = partial(user.say, new Date().getHours() + ':' + new Date().getMinutes());

// user.sayNow is a prefilled method, it this is binded to the same user object still
// because func.call(this...)
// now you can call the function with any additional method that was needed after prefilled
user.sayNow("Hello");

Revision #8
Created 24 December 2022 16:13:21 by Tamarine
Updated 27 July 2023 01:52:09 by Tamarine

