
In JavaScript objects are used to store key to value pair collection of data. You can think of them as
dictionary in Python.

You can create an object using brackets { }, and a list of optional properties that the object will
have. For example:

Access/modify the property using dot notation:

To delete a property you can use the delete operator

You can also create property that is multi-worded, but they must be quoted:

Accessing multi-worded must use the square bracket notation, since dot notation require key to be
a valid variable identifier (which excludes space, digit or special characters).

Single word property you can either use square bracket notation or dot notation, is up to you.

Objects and object references

Objects

let exampleObj = {

	age: 30,

 name: "John"

};

console.log(exampleObj.age);

exampleObj.age = 50;

delete exampleObj.age;

let exampleObj = {

	name: "John",

 age: 30,

 "have computer": true

};

console.log(exampleObj["have computer"]);

You can create empty object using either of these syntax:

With the square bracket notation, you can use a variable to query the property. However, you
cannot do the same with dot notation, it doesn't work.

To insert a property name that is from a variable you can use the square bracket.

In this case, if the user entered "apple", then the apple property will be inserted into the bag object
with value of 5.

If the variable you are assigning a property attribute to is the same as the property name, like
below:

Empty Object

let user = new Object();

let user = {};

Accessing object property

let key = "name";

console.log(exampleObj[key]); // Print out John

console.log(example.key); // Undefined, because it tries to find property named key

Computed properties

let fruit = prompt("What fruit do you want?");

let bag = {

	[fruit]: 5

}

console.log(bag.apple);

Property value shorthand

function makeUser(name, age) {

	return {

 	name: name,

 age: age

 }

}

You can just ignore writing the property assignment part and just put the variable name like below:

They are both equivalent, but it is a shorthand way of writing the other. If the property name is the
same as the variable, then you can just use the variable name as a shorthand.

You can mix and match property shorthand with normal property assignment.

Variables cannot have keyword names. However it is not true for object property, the name can be
whatever even keywords!

If you use other types as property name such as 0 , they are automatically converted into String so
"0" .

You can test if an object has a property via two ways:

function makeUser(name, age) {

	return {

 	name,

 age

 }

}

Property name limitations

let obj = {

	for: 1,

 let: 2,

 return: 3

}

let obj = {

	0: "test"

};

console.log(obj["0"]);

console.log(obj[0]);

// Print out same thing. The 0 in both the property and the square bracket are converted to

String.

Property existence test

console.log(user.noSuchProperty === undefined); // If this is true, then it has no

"noSuchProperty"

The in operator is more preferred, because there are cases where comparing to undefined will
fail, for example, if the property's value is undefined .

These method provide a generic way of looping over an object. They are called on the Object class
because it is meant to be generic, the each individual object can write their own while still having
this generic way.

Object.keys(obj) : Returns an array of keys
Object.values(obj) : Returns an array of values
Object.entries(obj) : Returns an array of [key, value] pairs

Since Object lack map , filter , and other functions that array supports you can simulate it using
Object.entries follow by Object.fromEntries

When you assign a primitive data type to another variable, it makes a new copy of the original
value.

"key" in object // If this is true, it exists, false it doesn't

Looping over keys of object
for (let key in object) {

	// Executes the body for each "key"

 	// Access the value via object[key]

}

Object.keys, values, entries

let prices = {

	banana: 1,

 orange: 2,

 meat: 4,

};

let doublePrice = Object.fromEntries(

	Object.entries(prices).map(entry => [entry[0], entry[1] * 2])

);

Object references

However, if you assign another variable an existing object you are making an alias, it is a reference
to the original object. It does not make a new copy. So if you change the attribute of the alias, it
will also change the original object!

Two objects are equal if they are the same object

The function Object.assign(dest, ...sources) will take in a target object, in which to copy all the
property to. One or more list of source object whose's property to copy into dest .

However, Object.assign() doesn't support deep cloning, if the object we are copying contain
another object, then it will be copying the references to the destination object. In order to do deep
cloning you will have to use structuredClone(object) function to clone all nested objects.

Reference comparsion

let a = {};

let b = a; // Making a reference of a

a == b; // This is true, because they are referencing the same object

a === b; // Also true.

Duplicating object

let user = { name: "John" };

let perm1 = { canView: true };

let perm2 = { canEdit: true };

Object.assign(user, perm1, perm2);

console.log(user); // Print out "John", true, true

let user = {

 name: "John",

 sizes: {

 height: 182,

 width: 50

 }

};

let clone = structuredClone(user);

You are able to add methods (functions that is a property of an object) to the object.

A shorthand way of writing method for an object is you can skip out the property name:

The sayHi() function in both ricky object are kind of similar but not fully identical, but the shorter
syntax is preferred.

user.sizes == clone.sizes // false, the size object within user object is cloned as well.

Method and "this" keyword

let user = {

	name: "John",

 age: 30

};

// First way of adding method

user.sayHi = function() {

	console.log(`Hi my name is ${this.name}`);

};

// Second way of adding method

let ricky = {

	name: "Ricky",

 age: 22,

 sayHi: function() {

 	console.log(`Hi my name is ${this.name}`);

 }

};

// Second way of adding method

let ricky = {

	name: "Ricky",

 age: 22,

 sayHi() {

 	console.log(`Hi my name is ${this.name}`);

 }

};

The this keyword is used to access the object that the method is invoked upon. Using this
keyword allow you to access the object's property that it is invoked upon. In the previous example
it is used to accessed ricky 's name property.

Unlike other languages like Java or Python, the this keyword can be used in any function actually
and doesn't have to be for a method.

You can directly write the following function:

Then you can assign it to be an object's method:

this will determine which object it is invoked upon at call-time, which object is before the dot
basically.

If you reference this in arrow function, then it inherit the this from the outer "normal" function.

"this" is not bound

function sayHi() {

	console.log(this.name);

}

let user = {name: "John"};

let admin = {name: "Admin"};

function sayHi() {

	console.log("Hi I am " + this.name);

}

user.f = sayHi;

admin.f = sayHi;

user.f(); // Will say "Hi I am John". this == user

admin.f(); // Will say "Hi I am Admin". this == admin

Calling the same function without an object will make this == undefined . If you call sayHi()
directly, in the previous example then this will be undefined . If you do this in browser, then
this will be assigned the global object window . In Nodejs it will also be a global object. It is
expected that you call the function in an object context if it is using this .

Arrow function have no "this"

In this case if you invoke ricky.foo() then the this that is being used in the bar arrow function
will be referring to ricky object, since it is inheriting it from the foo normal function.

In addition, if you invoke an arrow function that uses "this" directly without it being nested inside
any function at all, "this" will be an empty object.

JavaScript doesn't allow you to customize how operator work on objects. Languages like Ruby,
C++, or Python allows you but not JavaScript!

When you are using operator with +, -, * with objects, those objects are first converted into
primitive before carrying out the operations.

So the rules for converting object to primitive is as follows

1. Treating object as a boolean is always true. All objects are true in boolean context
2. Using object in numerical context, the behavior can be implemented by overwriting the

special method
3. For object in string context, the behavior can also be implemented by overwriting the

special method

To decide which conversion that JavaScript apply to the object, hints are provided. There are total
of three hints.

let ricky = {

	name: "Ricky",

 age: 22,

 sayHi: function() {

 	console.log(`Hi my name is ${this.name}`);

 },

 foo() {

 let bar = (x, y) => {

 console.log(this);

 }

 bar();

 }

};

Object to primitive conversion

Hints

1. "string"
This hint is provided when doing object to string conversion.

2. "number"
This hint is provided when doing object to number conversion.

3. "default"
This hint is provided when operator is unsure what type to expect, for example the binary
plus operator can work both on string and number, so if a binary plus operator
encounters an object, the "default" hint is provided.

In addition, the == operator also uses the "default" hint.

1. If obj[Symbol.toPrimitive](hint) method exists with the symbol key Symbol.toPrimitive
(system symbol), then it is called

2. Otherwise, if the method doesn't exist and the hint is "string" obj.toString() or
obj.valueOf() is called whichever exists

3. Otherwise, if the method doesn't exist and the hint is "number" obj.valueOf() or
obj.toString() is called whichever exists

If the object have this key to function property then this method is used and rest of the conversion
method are ignored.

If there is no Symbol.toPrimitive then JavaScript will call toString and valueOf .

For "string" hint toString method is called, if it doesnt' exist or it returns an object
instead of primitive, then valueOf is called
For other hints valueOf method is called, and again if it doesn't exist or it returns an
object instead of primitive, then toString is called

JavaScript conversion

Symbol.toPrimitive

let obj = {

	name: "John"

};

obj[Symbol.toPrimitive] = function(hint) {

	// Here the code to convert this object to a primitive

 // It MUST return a primitive value!

 // hint can be either "string", "number", "default"

}

toString/valueOf

If you only implement toString() then it is sort of like a catch all case to handle all primitive
conversion. You can't just implement valueof() to handle all primitive conversion since toString()
return a primitive String by default already.

By default, toString returns a String "[object Object]"
By default, valueOf returns the object itself

let user = {name: "John"};

"hello".concat(user) // hello[object Object]

user.valueOf() === user // True

Revision #6
Created 19 December 2022 21:12:52 by Tamarine
Updated 24 December 2022 19:19:41 by Tamarine

