
There are entities in JavaScript that let you schedule asynchronous tasks, tasks that you initiate
first, then they will finish later.

Task like disk reading, fetching resources from network that will take arbitrary amount of time and
you don't want your CPU to sit at that line of code waiting until it finishes. You would like to
schedule it and then come back when the task finishes. Functions such as setTimeout , setInterval
, or asynchronous file reading let you do that, let you schedule an asynchronous task, they
start, but finishes later, when the resources that they are waiting on are finished.

Often time, after the task is finished, we want to use the result of the task immediately how would
we do that? We cannot just add a function call right after the task because it will be scheduled
later, and we don't know if it will finishes right after it starts.

Say loadScript will take 10 seconds to load, then calling newFunction() immediately after you
started loading will be an error.

A callback function is a function that will be run after the asynchronous task is finished. We can add
a callback parameter to the loadScript function

Promises and promise chaining

Time before promise, callbacks

loadScript('myscript.js'); // contains newFunction(), but takes 10 seconds to load

newFunction(); // no such function

Introducing callbacks

function loadScript(src, callback) {

	let script = document.createElement('script');

 	script.src = src;

 	script.onload = () => callback(script); // Scripts are loaded asynchronously by the browser.

 											// We have to provide an empty arrow function because the

 											// event handler for onload calls a function with no parameter

 											// inside the body we will invoke the callback, when script is loaded

 	document.head.append(script);

}

Okay, then this guarantees that "My script ${script} is loaded" message to show up after
myscript.js is loaded into the HTML. Now here comes the interesting part, what if I want to load a
second script myscript2.js right after myscript.js is finished?

Easy, we can just add another loadScript function call inside the callback of the first script load.

And what if there is a third script that I want to load only after myscript2.js finishes? We would just
continue on nesting into the callbacks, and this is what is called the Pyramid of Doom or
callback hell.

It gets worse if you added error handling into loadScript itself, what if the script that you are
loading was unable to complete? It adds another layer or nesting like so:

loadScript('myscript.js', (script) => console.load(`My script ${script} is loaded`));

loadScript('myscript.js', function(script) {

	console.log("First script loaded");

 	loadScript('myscript2.js', function(script) {

 	console.log("Second script loaded");

 });

});

loadScript('1.js', function(error, script) {

 if (error) {

 handleError(error);

 } else {

 // ...

 loadScript('2.js', function(error, script) {

 if (error) {

 handleError(error);

 } else {

 // ...

 loadScript('3.js', function(error, script) {

 if (error) {

 handleError(error);

 } else {

 // ...continue after all scripts are loaded (*)

 }

 });

This can be partially alleviated by storing each step of script loading into a function on it's own, but
then it creates a function that will only be called once. The better solution is to use Promise

An enhancement to callback functions!

The idea with Promise is "I promise a result to you at a later time". There are two components to a
Promise object, the "Producing code" which is the code that can take some time. Then there is the
"Consuming code" which is the code that is waiting for the producing code's result.

The "Producing code" is meant to take some long, it will be executed as an asynchronous function
and the flow of the execution will move on to the next line of code. When the Promise is settled by
either calling resolve/reject with a value, then "Consuming code" kicks in after it is settled and the
callback function will be ran.

To create a new Promise object:

The executor or the "Producing code" after finishing with it's work will call either resolve if it was
successful or reject if there was an error.

The Promise object returned by new Promise constructor have two internal properties

state : Initially is pending then changes either to fulfilled when resolve is called or
rejected when reject is called.
result : Initially is undefined , then changes to value when resolve(value) is called or
error when reject(error) is called. You usually reject with an Error even though you
can technically reject with anything.

 }

 });

 }

});

Solution

Promise

Producer code/Promise object creation

let promise = new Promise(function(res, rej) {

	// the producing code that will take some take

 // usually will be waiting for some work to be completed before resolving/rejecting

});

How executor is ran

1. The executor is called automatically and immediately by new Promise i.e. the producing
work is immediately started

2. The executor will receive two arguments resolve and reject . These functions are pre-
defined by the JavaScript engine, so you just need to use them.

After a second resolve is called with the value "done" and the state of promise is changed to
"fulfilled" with result "done" .

That means that if you have synchronous code for example a big for loop meant to print out 1 -
100,000,000 inside the Promise it will be executed synchronously before the promise moves onto
the line after Promise . Unless you have await or waiting for other promises to resolve within this
promise, the code will be executed synchronously.

You can only call resolve or reject once. State change is final, any further calls to
resolve/resolve are ignored.

Now we talked about how "Producing code" work, we will look into how consumers uses the
Promise . These are handlers that when the Promise resolves either a result or error, will be
executed.

You register these handlers using .then and .catch .

The first argument is the handler that will be run when Promise is resolved.

The second argument is the handler that will be run when Promise is rejected.

let promise = new Promise((res, rej) => {

	// the function is executed automatically when promise is constructed

 setTimeout(() => resolve("done"), 1000);

});

What does (1) imply?

Only one result

Consumers

then

promise.then(

	function(result) { /* handles successful result. Pass the value of the promise */ };

 function(error) { /* handles reject. Pass the error of the promise */ };

);

In the case that you only interested in the successful result, you can ignore writing the second
function for handling the reject.

If we are only interested in errors, then you can use null as the first argument:

Or the second way that you can do it is:

They are equivalent.

First you have to understand that the method .then will return a new Promise object that you can
call .then again, and so on, and this is called Promise chaining.

Regardless of what you return, even if you return a primitive it will be wrapped in a Promise object
with it's state resolved immediately. If you return a Promise object, then the next .then that you
chained will only execute when that Promise you have returned is resolved.

In addition, even if you return nothing, .then will create a Promise object with undefined as it's
result.

catch

.then(null, function(err) { /* error handling code */ });

.catch(function(err) { /* error handling code */ });

Promise chaining

Wrong way of chaining

let promise = new Promise(function(resolve, reject) {

 setTimeout(() => resolve(1), 1000);

});

promise.then(function(result) {

 alert(result); // 1

 return result * 2;

});

promise.then(function(result) {

 alert(result); // 1

 return result * 2;

});

This is the wrong way of chaining promises, these are registering three separate handlers listening
on the same promise object that will all be executed simultaneously when promise is resolved.

This is the correct way of chaining the promise handlers, the first .then will only execute when the
promise object is resolved after one second.

The second .then will execute after the first .then has returned a resolved promise. Since the first
.then returns a primitive it will execute immediately right after the first .then is executed. Then
so on...

Inside .then like it was mentioned you can create and return a promise. In that case further
handlers will wait until it settles, and then it will execute

promise.then(function(result) {

 alert(result); // 1

 return result * 2;

});

new Promise(function(resolve, reject) {

 setTimeout(() => resolve(1), 1000); // (*)

}).then(function(result) { // (**)

 alert(result); // 1

 return result * 2;

}).then(function(result) { // (***)

 alert(result); // 2

 return result * 2;

}).then(function(result) {

 alert(result); // 4

 return result * 2;

});

Returning promises

Here, the first .then will execute after one second, then the second .then will execute after
another one second, because the first .then returns a new promise, the second handler must wait
until that promise resolves before it can execute!

You can write one .catch to handle the entire promise chaining if error has occurred anywhere
along the chain. This works because if one of the promises' state becomes rejected, then the .then
will not execute and it will continue down the chain until it finds .catch or a .then with an error
handler.

Promise handler have a implicit try...catch , if an exception happens it will get caught and treat as
a rejection promise object.

It also happens in .then chaining.

new Promise(function(res, rej) {

	setTimeout(() => res(1), 1000);

}).then(function(val) {

	console.log(val);

 return new Promise((res, rej) => {

 	setTimeout(() => res(val * 2), 1000);

	});

}).then(function(val) {

 	console.log(val);

});

.catch for promise chaining

new Promise((resolve, reject) => {

	throw new Error("Whoops");

}).catch(console.log);

// Equivalent to

new Promise((resolve, reject) => {

	reject(new Error("Whoops"));

}).catch(console.log);

Good summary picture for promise chaining

Now let's revisit the pyramid of doom that we had with loadScript , how do we make it so that one
script loads one after the other without callback hell?

Simple!

We make loadScript return a promise like so:

The promise object will resolve when the script is loaded and reject when the script failed to load.

Now we can just chain loadScript right after one another because it returns a promise.

Solving loadScript with promise

function loadScript(src) {

 return new Promise(function(resolve, reject) {

 let script = document.createElement('script');

 script.src = src;

 script.onload = () => resolve(script);

 script.onerror = () => reject(new Error(`Script load error for ${src}`));

 document.head.append(script);

 });

}

https://wiki.tamarine.me/uploads/images/gallery/2022-12/7H9image.png

And it looks way nicer to the eye without callback hell.

If you write synchronous code inside the executor then it will be executed synchronously
immediately, however, the handler will still be executed asynchronously.

However, if you write asynchronous code, meaning it will say wait for some task to be completed,
then the flow of the code will move onto the next line of the code, and when the task is done then
handler will be executed asynchronously as well.

loadScript("myscript1.js")

	.then(val => {

 	return loadScript("myscript2.js"); // remember loadScript returns a promise

	})

 .then(val => {

 	return loadScript("myscript3.js"); // this will only run when the previous .then's promise

resolves, i.e. when myscript2.js is loaded

	})

 .then(val => {

 	one();

 two();

 three();

 // Now you can call the functions that were loaded from each script files

	});

How are code executed inside Promise?

Revision #7
Created 29 December 2022 03:50:15 by Tamarine
Updated 27 July 2023 01:53:21 by Tamarine

