
In JavaScript there is two primitive types that can be used as object property key

1. String
2. Symbol type

Don't confuse the symbol type in Ruby with JavaScript they are different albeit similar in that they
are used to create unique identifier.

A symbol can be created using Symbol()

You can give a symbol a description as it's parameter, mostly useful for debugging purposes.

Symbols are guaranteed to be unique, even if they have the same description, they are considered
to be different values.

Symbols don't support implicit conversion to a String.

Symbols allows you to create hidden properties on an object that no other part of code can
accidentally access or overwrite

Symbol Type

Symbols

let id = Symbol();

// id is a symbol with description "this is id"

let id = Symbol("this is id");

let id1 = Symbol("id");

let id2 = Symbol("id");

id1 == id2 // False

Property of symbols

Hidden properties

let user = {

	name: "John"

Here we are creating a hidden property using the id symbol that we have created. We can access it
using the same symbol as the key.

However, if we tried to access it using String for example user["id"] we would get undefined .

Using symbol is to avoid conflict between say a third party code that wants to inject some of their
own property into the object. If they are just using String key then it will likely overwrite some of
the existing property for the object. However, if they use Symbols then there will be no conflicts
between the identifiers.

You can use symbols in object literal, just use the square bracket when you are using
symbols as key, like how you would use an variable as key
Symbols are skipped in for ... in loops

If you want different named symbols to be referring to the same entity you can do that using global
symbol registry. Create symbol in it and access them later, repeated access by the same name will
return the same symbol.

The function Symbol.for(key) will look in the global registry for a key named key and return the
Symbol that the key is mapped to. If it doesn't exist it will create one. Subsequent access to the
same key will guaranteed to return the same Symbol.

This symbol is the same symbol in Ruby.

};

let id = Symbol("id");

user[id] = 1;

console.log(user[id]);

Symbols... more

Global symbols

let id = Symbol.for("id"); // read from global registry, create if it doesn't exist

let idAgain = Symbol.for("id"); // read it again in another part of code

id == idAgain // true

Symbol.keyFor

If you want to find the key for a particular symbol using the Symbol object, you can do that with
this function.

let globalSym1 = Symbol.for("name");

let globalSym2 = Symbol.for("name");

Symbol.keyFor(globalSym1); // "name"

Symbol.keyFor(globalSym2); // "name"

Revision #1
Created 20 December 2022 19:45:00 by Tamarine
Updated 20 December 2022 21:01:32 by Tamarine

