
A named storage for storing data.

There are couple way of creating a variable

This is the relic of the past, back when JavaScript first came out it was the only way of declaring
variables with the var keyword.

Variable declared with var is either globally scoped or function scoped.

A var variable defined in function can be used only the function and is functionally scope.

A var variable defined outside of a function is global scoped, can be used in any function.

greeter is globally scoped, hello is function scoped, hence if you try to access hello outside of
the newFunction it will be a error since it is undefined.

You are able to re-declare and updated var variables.

This is perfectly valid JavaScript code.

Variables

Variables

var keyword

var greeter = "hey hi";

function newFunction() {

 var hello = "hello";

}

funky var keyword

var greeter = "hello";

var greeter = "hello world!";

var greeter = "hi";

greeter = "haha xd";

This is of course allowed.

A mechanism where variables and function declarations are moved to the top of their scope before
code execution.

So the code above is interpreted as if it was like this

The major problem with using var is that if you are going to redefine a variable that is already
been defined, it will be hard to tell. To make this point more clear, here is an example:

Here, you can see that if times is greater than 3 which it is in this case, it will redefine greeter to
be "say Hello instead" . Now in this short snippet maybe you can tell by yourself that greeter has
been redefined, but what if it is many lines down. You won't know you be overwriting the original
greeter variable since they are so far apart.

The let keyword is the de facto standard for declaring a variable instead of var . Variable declare
with let are block-scoped.

You can update variable that's declared as let , but you cannot redeclare it.

Redeclaring the same variable in different scope { }, is fine because those two greeting are
treated as different variables since they are in different scope.

Hoisting of var

console.log(greeter);

var greeter = "say hello";

var greeter;

console.log(greeter); // greeter is undefined

greeter = "say hello";

Problem with var

var greeter = "hey hi";

var times = 4;

if (times > 3) {

 var greeter = "say Hello instead";

}

console.log(greeter) // "say Hello instead"

let keyword

It also solves the problem with using var .

With let you cannot redeclare a variable like var .

var keyword will basically move the declaration of a variable even if you assigned it on the same
line to the top of the program.

However, variable declared with let have no hoisting.

Variable that's declared with const have const values. They are block scoped just like let .
However, they cannot be updated or redeclared once they are declared.

In addition, they must have an initialization value.

let greeting = "say Hi";

if (true) {

 let greeting = "say Hello instead";

 console.log(greeting); // "say Hello instead"

}

console.log(greeting); // "say Hi"

No redeclaring

var a = 5;

var a = 3; // This is fine

let a = 5;

let a = 3; // This is error

No hoisting

console.log(a);

var a; // undefined (not an error)

console.log(a);

let a; // Uncaught ReferenceError: a is not defined

const keyword

const greeting = "Hi";

greeting = "Hello"; // error, you cannot assign to a const variable

Object declared with const can be updated, but cannot be reassigned.

Just like let the const keyword also doesn't allow hoisting.

const greeting = {

 message: "say Hi",

 times: 4

}

greeting.message = "Oh hi!"; // This is allowed!

const greeting = {

 message: "say Hi",

 times: 4

}

greeting = {

	another: "message",

 	xd: "please"

}

// This is not allowed! Reassigning is not allowed!

No hoisting

Revision #4
Created 17 December 2022 00:24:33 by Tamarine
Updated 18 December 2022 16:14:51 by Tamarine

