
What is *? In Regular Expression?
Parameterization and string substitution
All About Importing Modules and from Packages
Global variables with imports
Unpacking operator in code and function header

Python

https://stackoverflow.com/questions/3075130/what-is-the-difference-between-and-regular-
expressions

What is *? In Regular
Expression?

In the context of building a database query like so:

CREATE TABLE fish (name TEXT, species TEXT, tank_number INTEGER) you would likely want to include
for example user input for say a search query into a database. There are two ways to go about it
and the first way to build a query is via string substitution and this is the bad way.

Say the user input is in the variable name and the user can put whatever name they like including
special characters. We have our search query to find the particular name that the user inputted as
follows:

Using f-string we are interpolation the variable with the query and this give the chance for SQL
Injection attack to occur. This is because the user can specify something like name = "Tom' OR 1=1"
as it's input and when the variable is used for interpolation for building the query it results into:

And when the query is executed it will pick everyone from the database and retrieve their
information (possibly private information).

Now for a much safer approach to building query is via parameterized queries. In this case, the
variables that are used to build the query are pass as parameters and not used directly in a string
interpolation. How you do this will depend on the library that you use, for example, in Python when
you execute a query you can pass a parameterized string along with the parameters to build a
parameterized queries.

Parameterization and string
substitution
String substitution

query = f"SELECT * from user_table WHERE name='{name}'"

name = "Tom' OR 1 = 1"

"SELECT * from user_table WHERE name='{name}'"

"SELECT * from user_table WHERE name='Tom' OR 1 = 1"

Parameterized queries

The idea is that if the user input are passed as parameters, they no longer have the chance to
mess with the query since there are no interpolation, the user input is not used to build a query but
rather as a parameter. The variables themselves will no long be used as part of an
executable code but rather treated as literal values.

Now no matter what the user input, even Tom' OR 1 = 1 as name it will be treated literally, as you
are looking for a person named Tom' OR 1 = 1 in the database.

In the future, if you are back to this post and wonder isn't this the same as string substitution? You
would be wrong.

The way that parameterized query works is that the query is first sent to the SQL engine, and the
database will know exactly what this query will do, and only then it will insert the username and
passwords as LITERAL VALUES. So the user input values cannot affect the query in anyway.

It is separating the values with the queries, the query is first sent to the database and database will
know what it does, then it will ask for the parameters that you have layed out and use it LITERALLY,
not as part of the query anymore.

In the previous example, you are asking the database can you select all the columns from
user_table where the name is equal to a parameter, the database understood your request, then
ask you for the name and the name is provided as parameter. Even if you sent Tom' OR 1 = 1 the
database will be looking for a person named Tom' OR 1 = 1 .

query = "SELECT * from user_table WHERE name=?"

params = (name)

cursor.execute(query, params)

Further clarification

A module is just a Python file with the corresponding .py extension. So if you're talking about the
math module then there is a corresponding math.py file that contains functions, classes, and
constants that are meant to be used by other Python files.

If you have written a python module under say a_module.py in a directory of code .

And you have a script called a_script.py in directory called scripts . You would like to use the
a_module in a_script.py by importing it.

Then you try to run the a_script.py by running python3 scripts/a_script.py it will fail with

When Python imports a module it will try to find a package or module. But where does it look?
Python has a simple algorithm for finding a module with a given name. It will look for a file called
a_module.py in the directories listed in the variable sys.path .

All About Importing Modules and
from Packages
Module?

Where does Python look for modules

import a_module

$ python3 scripts/a_script.py

Traceback (most recent call last):

 File "scripts/a_script.py", line 1, in <module>

 import a_module

ModuleNotFoundError: No module named 'a_module'

>>> import sys

>>> type(sys.path)

<class 'list'>

>>> for path in sys.path:

... print(path)

...

/Users/brettmz-admin/dev_trees/psych-214-fall-2016/sphinxext

It doesn't search recursively, it will only search in the directory that is listed under sys.path . And
as you can see the code directory is not in sys.path which is why Python could not import
a_module.py .

To fix this you can just simply append to the sys.path list like so:

Now this will work as expected. This simple search algorithm for module also works for packages, it
searches for packages then the module the same way.

A namespace packages are special packages that allows you to unify two packages with the same
name but are at different directories:

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python37.zip

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/lib-

dynload

/Users/brettmz-admin/Library/Python/3.7/lib/python/site-packages

/Users/brettmz-admin/dev_trees/grin

/Users/brettmz-admin/dev_trees/rmdex

/usr/local/lib/python3.7/site-packages

import sys

sys.path.append('code')

import a_module

Information from: https://bic-berkeley.github.io/psych-214-fall-2016/sys_path.html

What is Namespace package and Regular
Package

path1

+--namespace

 +--module1.py

 +--module2.py

path2

+--namespace

 +--module3.py

 +--module4.py

https://bic-berkeley.github.io/psych-214-fall-2016/sys_path.html

Notice that in order to make Namespace package work you would have to add the two paths path1
and path2 to sys.path . Then you can import the four modules by doing

Or import specific functions from the module

Namespace packages basically unifies the two packages with the same name in a single
namespace. You can import all four modules freely.

However, if either one of the namespace packages gain an __init__.py then it will become a normal
package, and the unification is no longer as the other directory will be ignored.

If both have __init__.py the first one encountered in sys.path is the one being used.

A regular package is a collection of modules. In order to make Python recognize that it is a regular
package you must add __init__.py . Without __init__.py then it will be interpreted as a
namespace package which doesn't fit 99% of normal use cases.

So the moral of the story is that if you're creating packages, just put __init__.py in it unless you
have the special use case of needing to unify two namespace packages that are in different
directory.

Regular packages are also searched in sys.path just like everything else.

from namespace import module1

from namespace import module2

from namespace import module3

from namespace import module4

from namespace.module1 import boo

Regular package

If for whatever reason you need to share global variables you need to keep in mind that global
variables in Python are global to a module, not across modules. Which is different than say static
variable in C.

To make your global variable be able to be shared cross module you would obviously declare a
global variable in a module, and the best practice is to declare it in a dedicated module file called
config.py and have everyone that needs that global variable import it into their scope.

Global variables with imports
Sharing global variables between modules

config.py

a = 69 # Variable declared on top level are global by default

cool.py

import config

print(config.a)

A word of warning, don't use from import unless you want the global variable to be a
constant. If you do from config import a this would create a new a variable that is
initialized to whatever config.a is at the time of the import, and this new a variable would
be unaffected by any assignments to config.a . So it is not global global anymore.

In Python you are allowed to do deconstruction similar to how you can do deconstruction
assignment in JavaScript. You can take a list and then assign each of the elements individually to
variables on the left hand. For example:

If you are using this simple unpacking assignment then the values on the right hand side will be
automatically assigned to the variables to the left according to their position in the tuple.

When you unpack values into variables the number of variables present must be exactly equal to
the number of elements in the tuple, else ValueError

You can use this tuple unpacking to unpack a String into characters, unpack list into variables,
unpack a generator, and unpack a dictionary as well.

The left hand side can be a list as well but is rarely used.

The * operator extends the unpacking tuple functionality to allow you to pack multiple values into a
single variable as a list. For example:

In this example, the variable a gets stuffed two values 1 and 2 into it as a list. Notice the usage of
comma there, it is required otherwise it will be a normal list assignment statement and not
unpacking.

You can have as many variables as you want on the left hand side, but there can only be one
starred variable. The starred variable contains all the rest of the values that are not distributed to

Unpacking operator in code and
function header
Unpacking

(a, b, c) = (1, 2, 3)

a = 1

b = 2

c = 3

* Unpacking operator

*a, = [1, 2]

a = [1, 2]

the mandatory variable in the list, even if it has no value. If there are no element left to distribute
to the starred variable, then the starred variable will just be an empty list:

Sometimes in Python function header you will see functions that takes in variable number of
position arguments with *, and variable number of keyword arguments with **. For example:

args and kwargs are both optional, and are automatically default to () and {} respectively, if
none are provided for the function.

Calling the function above would be like so:

1. Variables without default value must be before those that have default values

Is not valid Python function

def test_func(a=10, b, *args, **kwargs)

2. *args must be fore **kwargs . They cannot switch, otherwise, invalid Python syntax
3. Follow the structure of func , don't try to put position arguments after *args .

a, b, *c = [1, 2]

a = 1

b = 2

c = []

Function header with *args and **kwargs

def func(required, *args, **kwargs)

func("hello", 1, 2, 3, site="hi", oh="lord")

required = "hello"

args = (1, 2, 3)

kwargs = {"site": "hi", "oh": "lord"}

Side note on method headers

