
A module is just a Python file with the corresponding .py extension. So if you're talking about the
math module then there is a corresponding math.py file that contains functions, classes, and
constants that are meant to be used by other Python files.

If you have written a python module under say a_module.py in a directory of code .

And you have a script called a_script.py in directory called scripts . You would like to use the
a_module in a_script.py by importing it.

Then you try to run the a_script.py by running python3 scripts/a_script.py it will fail with

When Python imports a module it will try to find a package or module. But where does it look?
Python has a simple algorithm for finding a module with a given name. It will look for a file called
a_module.py in the directories listed in the variable sys.path .

All About Importing Modules and
from Packages

Module?

Where does Python look for modules

import a_module

$ python3 scripts/a_script.py

Traceback (most recent call last):

 File "scripts/a_script.py", line 1, in <module>

 import a_module

ModuleNotFoundError: No module named 'a_module'

>>> import sys

>>> type(sys.path)

<class 'list'>

>>> for path in sys.path:

... print(path)

...

It doesn't search recursively, it will only search in the directory that is listed under sys.path . And
as you can see the code directory is not in sys.path which is why Python could not import
a_module.py .

To fix this you can just simply append to the sys.path list like so:

Now this will work as expected. This simple search algorithm for module also works for packages, it
searches for packages then the module the same way.

A namespace packages are special packages that allows you to unify two packages with the same
name but are at different directories:

/Users/brettmz-admin/dev_trees/psych-214-fall-2016/sphinxext

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python37.zip

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7

/usr/local/Cellar/python/3.7.2_1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/lib-

dynload

/Users/brettmz-admin/Library/Python/3.7/lib/python/site-packages

/Users/brettmz-admin/dev_trees/grin

/Users/brettmz-admin/dev_trees/rmdex

/usr/local/lib/python3.7/site-packages

import sys

sys.path.append('code')

import a_module

Information from: https://bic-berkeley.github.io/psych-214-fall-2016/sys_path.html

What is Namespace package and Regular
Package

path1

+--namespace

 +--module1.py

 +--module2.py

path2

+--namespace

 +--module3.py

 +--module4.py

https://bic-berkeley.github.io/psych-214-fall-2016/sys_path.html

Notice that in order to make Namespace package work you would have to add the two paths path1
and path2 to sys.path . Then you can import the four modules by doing

Or import specific functions from the module

Namespace packages basically unifies the two packages with the same name in a single
namespace. You can import all four modules freely.

However, if either one of the namespace packages gain an __init__.py then it will become a normal
package, and the unification is no longer as the other directory will be ignored.

If both have __init__.py the first one encountered in sys.path is the one being used.

A regular package is a collection of modules. In order to make Python recognize that it is a regular
package you must add __init__.py . Without __init__.py then it will be interpreted as a
namespace package which doesn't fit 99% of normal use cases.

So the moral of the story is that if you're creating packages, just put __init__.py in it unless you
have the special use case of needing to unify two namespace packages that are in different
directory.

Regular packages are also searched in sys.path just like everything else.

from namespace import module1

from namespace import module2

from namespace import module3

from namespace import module4

from namespace.module1 import boo

Regular package

Revision #3
Created 14 March 2023 03:05:53 by Tamarine
Updated 14 March 2023 18:58:07 by Tamarine

