
Common Collections

Vector
Allows you to store variable number of values next to each other

To create an empty vector you call the Vec::new function

Since we are not inserting any initial values into the vector we will have to provide type
annotations otherwise Rust doesn't know what type of vector this is for. There is the vec! macro
that will create a new vector that holds the values you give it:

So you would rarely need to do the type annotation yourself.

Updating a vector
To add elements to the vector you would use the push method:

Reading elements of vectors
Two ways of getting elements out of the vector, via indexing or using the get method.

let v: Vec<i32> = Vec::new();

let v = vec![1, 2, 3];

let mut v = Vec::new();

v.push(5);
v.push(6);

let v = vec![1, 2, 3, 4, 5];

let ele = third: &i32 = &v[2]; // indexing
let ele: Option<&i32> = v.get(2); // get method

match ele {
	Some(num) => println!("The number is {num}"),

Iterating over a vector
This is with immutable reference

This is with mutable reference, in order to change the value of that mutable referene you have to
use * dereference operator to get the value in i before the += operator.

String
A collection of characters, they are stored on the heap. This is different than String literals which is
str or &str slice type.

Hash map
Allows you to associate a value with a key.

 	None => println!("It doesn't exist"),
}

let v = vec![100, 32, 57];
for i in &v {
	println!("{i}"};
}

let mut v = vec![100, 32, 57];
for i in &mut v {
	*i += 50;
}

Revision #1
Created 30 January 2023 20:45:43 by Tamarine
Updated 30 January 2023 21:56:44 by Tamarine

