
Enum and Pattern Matching

Defining an Enum
Enum or enumeration gives you a way of defining a set of possible values for one value. "This value
can be these possible set of values".

To define an enum to be a set of possible values here is an example:

Here, the enum IpAddrKind is a custom data type that can have two possible values, V4 and V6.
After defining this enum you can use it elsewhere in your code.

To define an enum with one of its variations you would use the :: syntax under the enum name
like such:

Function taking enum
You can also then use enum as a function parameter:

Advantage of enum over struct
Using enum you can actually give an associated data with each possible variations. You can give
say V4 three u32 and for V6 a String value like such:

enum IpAddrKind {
	V4,
 V6,
}

let four = IpAdddrKind::V4;
let six = IpAddrKind::V6;

fn route(ip_kind: IpAddrKind) {}

// invoking it
route(IpAddrKind::V4);
route(IpAddrKind::V6);

Doing it this way, you do not need to make extra struct to associate data with each of the enum
variations.

The associated data for each enum variant can be anything: strings, numeric types, or even
structs!

To actually give the value when creating it you would do something like so:

Enum examples

In this case there are four variants of the Message enum

1. Quit: Has no associated data
2. Move: has named fields just like a struct
3. Write: Has a single String
4. ChangeColor: Has three i32 values

Methods on Enum
Rememberthat the impl block work on structs and also enums. So you can define methods for each
enum type that you have defined:

enum IpAddr {
	V4(u32, u32, u32),
 V6(String),
}

 enum IpAddr {
 V4(u8, u8, u8, u8),
 V6(String),
}

let home = IpAddr::V4(127, 0, 0, 1);
let loopback = IpAddr::V6(String::from("::1"));

enum Message {
	Quit,
 Move {x: i32, y: i32},
 Write(String),
 ChangeColor(i32, i32, i32),
}

You can call it on the enum variant that you have defined just like how you can call it on an
instance of a struct.

The match control flow construct
To actually retrieve the associated value out from the enum variant and do conditional with it you
would have to use the match construct.

You would be able to use the match construct to compare a value against a series of patterns then
execute code based on which pattern it is matched.

match not only work with enum types but literal values, variable names, wildcards, and other
things as well!

Testing match with enum

impl Message {
	fn call(&self) {
 	// method body
	}
}

let m = Message::write(String::from("hello"));
m.call();

enum Coin {
	Penny,
 Nickle,
 Dime,
 Quarter,
}

fn value_in_cents(coin: Coin) -> u8 {
 	match coin {
 	Coin::Penny => 1,
 	Coin::Nickle => 5,
 	Coin::Dime => 10,
 	Coin::Quarter => 25,
 	}
}

The function value_in_cents will take in an enum of Coin type and then return it's corresponding
variant value in u8 .

To use the match expression, you would have to use the match keyword follow by the value that
you want to pattern match, then you would list out all the possible combination of pattern that you
are matching for this particular value.

The match arms have two parts, the pattern and some code, if the code is short and one line long,
then you don't need another set of brackets, however, if you have multiple lines of code to execute
if the pattern matches then you would need the brackets. The pattern and code is separated by the
=> operator.

When match expression executes, it compares the value against the pattern of each arm in order,
if it matches then that code is executed.

Pattern with associated values
To retrieve the value for a corresponding enum variant you can follow the same syntax like so:

In this case, we have a enum variant Quarter with an associated value of bool to indicate whether
it is rare or not. If we are going to write a function to retrieve that bool value from the Quarter
variant, how would we do that?

Now if we are calling the function like so retrieve_rare(Coin::Quarter(true)) this will yield true as it's
return value. How does it work? Well, we are constructing a Quarter variant of Coin enum with
true as it's associated data to indicate that it is indeed rare. Then when that enum type is passed
into the function it will be doing a pattern match, it matches the first pattern because it is a
Quarter, the associated data is binded to the variable rare , and then we are just simply return rare
as it is because we just want to get that value out from the enum.

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter(bool),
}

fn retrieve_rare(coin: Coin) -> bool {
	match coin {
 	Coin::Quarter(rare) => rare,
 other => false,
	}
}

Catch-all pattern
If you are only interested in say two out of ten possible patterns and want to handle the rest of the
pattern one way, you don't have to code out all of the pattern matches, and instead use a catch-all
pattern.

As you can see, the other arm at the end will be a catch-all pattern that handles all other patterns
that is not 3 and 7. The value of all the none matched pattern are stored into other .

If we do not need the value, and just need to catch-all then you can use the pattern _ to do the
catch-all. Otherwise, if you don't use the value in catch-all Rust will warn you about unused
variable.

if let control flow
Combining if and let let you handle values that match one pattern while ignoring the rest. For
example:

This code will print out the value inside the enum Some and for any other variant it will do nothing
(i.e. for the None variant it will do nothing).

Matches must be exhaustive, it must cover all possibilities. If is missing some possibility then
the code will not compile!

let dice_roll = 9;
match dice_roll {
	3 => add_fancy_hat(),
 7 => remove_fancy_hat(),
 other => move_player(other),
}

fn add_fancy_hat() {}
fn remove_fancy_hat() {}
fn move_player(num_spaces: u8) {}

let config_max = Some(3);
match config_max {
	Some(max) => println!("The max is {}", max),
 _ => (),
}

However, writing _ everytime and writing these verbose pattern matching for just doing something
small for one pattern is just too repetitive, so if let let you condense this into much shorter syntax:

This is equivalent to the match expression done previously but now you don't have to write the _
catch-all pattern and just focus on the one case you actually care. It works the same way as a
match expression, it will bind the value inside Some to max variable if config_max is a Some enum
variant.

You can also include an else with if let syntax. Which is the same as the things inside _ the catch-
all pattern:

This code will increment count if the Coin enum isn't an Quarter variant.

let config_max = Some(3);
if let Some(max) = config_max {
	println!("The max is {}", max);
}

let mut count = 0;
if let Coin::Quarter(state) = coin {
	println!("The state is {}", state);
}
else {
	count += 1;
}

Generally, use if let if you are only expecting to handle one of the enum variant and
ignoring the rest.

Revision #1
Created 29 January 2023 18:10:49 by Tamarine
Updated 29 January 2023 21:37:08 by Tamarine

