Packages, Crates, and
Modules

Crate

The smallest unit that the Rust compiler will work with. When you run rustc some_file.rs the file
some _file.rs is treated as a crate file.

A crate when being compiled can be compiled into two forms, a binary crate or a library crate.
Binary crate are programs that after being compiled are turned into an executable that you can
run. Binary crate must have a function called main that gets called when the executable is ran.

Library crate don't have a main function and they do not get compiled into an executable binary.
Instead, they defined functions that are meant to be shared with multiple projects, much like
exporting some common functions that you are going to be using in other projects.

Hence in Rust, when you refer to "crates" it is usually library crate, and refer to binary crate as just
the executable or binary.

Exporting and importing functionality

We will go through how Rust does it's import and export system via an example, assume we have a
directory setup as such:

my_project

— Cargo.toml

L+ src
F— main.rs
— config.rs
b routes

| — health_route.rs

| L— user route.rs

L+ models

L— user_model.rs



We have functions written in config.rs, routes/health_route.rs, routes/user_route.rs, and
modules/user module.rs that we want our main.rs use. How do we do that?

Importing config.rs

Rust does not build the module tree for you even though the files with functions that you want your
main.rs to use is under the same directory, Rust by default only sees the crate module which is

main.rs .

my_project

— Cargo.toml

src

— mailn.rs

— config.rs

routes

— health_route.rs
— user_route.rs
models

— user_model.rs

crate

File System Tree Module System Tree

So what do we do? We will have to explicitly build the module tree in Rust, there is no implicit
mapping between the directory tree and the module tree!

In order to add files to the module tree we have to declare that file as a submodule using the mod
keyword. Where do you declare submodule? Where you are using file, in this case we want to call
those functions in main.rs hence you will have to declare the submodule in main.rs by writing mod

my_module; .

By writing mod my_module the compiler will look for my module.rs or my_module/mod.rs in the same
directory.

In this case because we are importing config.rs which is a file in the same directory as main.rs you
can just write mod config;

// main.rs

mod config;

fn main() {

config::print_config();


https://wiki.tamarine.me/uploads/images/gallery/2023-01/ZQIimage.png

printin!("main");

}

After you import the module the functions can be called by referring to them using :: under the
submodule namespace.

After you have declare the submodule the module tree looks something like this:

my_project

— Cargo.toml

src

— main.rs

— config.rs crate
routes |9 config
— health_route.rs

—— user_route.rs

models

—— user_model.rs

File System Tree Module System Tree

But wait it still doesn't work?!

After you have successful declare the config module, it isn't enough to call the function because
almost everything in Rust is private by default. In order to call print_config you have to mark it as a
public function that other file can call by using the pub keyword.

// config.rs

pub fn print_config() {
printin!("config");

}

Now you will be able to run main.rs without a problem.

Importing routes/health_route.rs

Now here we are importing another file under another directory the routes directory. The mod
keyword is only for my _module.rs or my_module/mod.rs in the same directory. In order to call functions
inside routes/health_route.rs from main.rs here are the things we need to do

1. Make a file named routes/mod.rs


https://wiki.tamarine.me/uploads/images/gallery/2023-01/Axfimage.png

2. Declare the routes submodule in main.rs , this will import the file routes/mod.rs

3. Then in routes/mod.rs we will declare the submodule health_route and make it public by
prefixing it with pub keyword

4. Then in addition we also have to make the function inside health_routes.rs public as well
and we are finally done

my_project
— Cargo.toml

L+ src
F— main.rs
— config.rs
F— routes
| F— mod.rs

| — health_route.rs
| L— user route.rs

L+ models

L— user_model.rs

// main.rs
mod config;

mod routes;

fn main() {
routes::health_route::print_health_route();
config::print_config();
printin!("main");

}

// routes/mod.rs

pub mod health_route;

/] routes/health_route.rs
pub fn print_health_route() {
printin!("health_route");

}

The idea is that if you are going to declare a submodule under another directory, you will
import a submodule that has the same directory name. i.e. another_directory/mod.rs , and
inside that file you will declare the public submodule that you are declaring. Finally make the
function of the nested submodule you want to export public as well.



When you call it, you will have to go by the submodule names you have set up including the
directory name submodule.

Revision #4
Created 29 January 2023 23:12:42 by Tamarine
Updated 27 July 2023 01:54:13 by Tamarine



