
References and Borrowing

Ownership
Rust has it's own way of managing memories that are allocated on the heap. Unlike C, where the
burden of allocating and freeing the memory that is allocated on the heap falls on the shoulder of
the programmer, Rust manages the memory for you as long as you follow it's ownership
conventions.

This is how Rust deal with dynamically allocated memory on the heap. When you allocate data on
the heap, that piece of data will be associated with a variable name. When the scope of that
variable ends, and naturally (most of the time) the data on the heap associated with that variable
will need to be freed, and Rust does that for you automatically:

Whenever a variable goes out of scope, if it has its memory allocated on the heap, it will be called
a special function called drop when the variable goes out of scope. It will free the memory that
is allocated for that variable back to the allocator, Rust will call it for you automatically
at the closing curly bracket (the end of a scope).

Data move
Let's look at some form of alias and copying in Rust:

This will do what you expect, the value of x is copied over to y . If you change y it will not affect
the value of x .

Now let's look at data allocated on the heap.

{
	let s = String::from("Hello"); // s is valid from this point forward
}	// Scope of s is over, s is no longer valid, and the memory is returned to the allocator

let x = 5;
let y = x;

let s1 = String::from("Hello");
let s2 = s1;

If we do this, we assume that s2 is an alias which points to the same string that's allocated on the
heap. That will be true for language that C or Python, but in Rust it is different. When you make an
alias to another data allocated on the heap, that pointer will be moved from s1 to s2 , so s1 will
no longer be valid after line number 2! This is due to the design of Rust because like we have
mentioned earlier, when a variable goes out of scope a special drop function is called to free up
the memory allocated for the data, if there is two variables that points to that allocated data, then
there is going to be a double free error!

To resolve this, Rust does variable move, so when you do s2 = s1 , s1 will no longer be valid
afterward, so Rust only needs to worry about freeing up s2 and doesn't have to worry about
freeing s1 anymore.

This is called move, Rust will invalidate the first variable after you do the assignment.
Three tables: tables s1 and s2 representing those strings on thestack, respectively, and both pointing to the same string data on the heap.Image not found or type unknown
This is wrong!

Clone
However, if you want to clone the data allocated on the heap you can call the clone method.

Now s2 will also contain a copy of the heap data pointed by s1 .

What about variable on the stack?
If you use say primitives in Rust like an integer like so

Both x, y are still valid after running line number 2, why? This is because primitive's data size like
integer is known at compile time and are stored entirely on the stack, copying the actual value are
quick and easy to make, so there is no reason to invalidate x afterward.

Function and ownership
If you decide to pass a variable data that's allocated on the heap to a function let's say, it will also
carry out move, which means the variable that you pass into the function will no longer be valid
after you do the function call like so:

let s1 = String::from("hello");
let s2 = s1.clone();

let x = 5;
let y = x;

fn main() {
	let s = String::from("hello");

References and borrowing
So to solve what we have just talked about, instead of moving the variable into the function, we will
give the function a reference to the variable, so that after the function call the variable with data
allocated on the heap is still valid afterward.

 take(s); // s is no longer validate after

 let x = 5;

 cant_take(x); // x is still valid because it is a copy, not a move
}

fn take(input: String) {
	// do something
}

fn cant_take(num: i32) {
	// do something
}

References uses the ampersand syntax, note this is not getting back the pointer, although,
references are implemented via pointer, this is different than saying &num in C, which get
you the pointer that points to the number.

fn main() {
	let s1 = String::from("hello");

 let len = calculate(&s1);

 println("{}'s length is {}", s1, len);
}

fn calculate(s: &String) -> usize {
	s.len()
}

In this case, in order to pass a reference of a variable, we have to change the parameter type of
the function from String to &String to denote that the parameter is indeed a reference to a String.
This is called borrowing, it is borrowing the reference without moving it.

Now s will be a reference, which points to the same data that s1 points to.

Mutable references
If you want to say append any data to the reference that is passed to a function, you have to add
the mutable modifier otherwise, the reference would not be able to make any changes to the data
on the heap.

After adding mut modifier to both of the variable and the function header to signal that this
function will change the String then it will work properly:

When you are doing mutable borrowing you can only do so when there is no other references to
that same value:

fn main() {
 let s = String::from("hello");

 change(&s);
}

fn change(some_string: &String) {
 some_string.push_str(", world"); // This will not work!
}

fn main() {
 let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s; // second mutable borrow occurred, doesn't work

In this case r2 is a second mutable borrower, but there is already a mutable borrower that existed
already, hence the code will not compile.

In addition, if you are creating mutable references you cannot fix it with immutable
references:

However, if you finish using a reference, (the scope of a reference starts from where it was
introduced and continue through the last time that reference is used), then you can introduce say a
mutable reference.

Dangling reference
If you are creating a local variable in a function, and then you attempt to return a reference to that
variable from that function, Rust will prevent you from doing that because the data will be
invalidated after the function is finished.

To resolve that problem, instead of returning a reference, return that variable directly, this will
result in a move which won't deallocate that local variable if it is a move. However, if you return a
reference, the local variable will be deallocated and that reference will become invalid. (In C you
can return a pointer to a local variable after the function is finished, but dereferencing it will
resulting in undefined behavior).

let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // a second immutable reference is fine
let r3 = &mut s; // error mixing immutable and mutable references

let mut s = String::from("hello");

let r1 = &s; // fine
let r2 = &s; // both immutable reference so is okay

println!("{} {}", r1, r2); // using the two immutable references, so their scope ends here

let r3 = &mut s; // introducing a mutable reference, it is okay because immutable references ended the line
before
println("{}", r3);

Revision #4
Created 23 January 2023 23:25:05 by Tamarine
Updated 28 January 2023 17:47:14 by Tamarine

