
Slices in Rust let you reference a contiguous sequence of elements in a collection rather than
referencing the whole collection.

It is also a reference so there is no ownership, no moving.

Let's start with a string slice that reference to a part of a String:

To create a slice you specify the collection you are creating the slice reference from along with the
& to indicate that it is an reference. Then you provide the range [starting_index..ending_index] ,
starting_index is the first position in the slice and ending_index is the ending element index,
excluding that element.

The reason why we are using slice because say we are finding a particular index in a String, after
finding that index number, that String suddenly changed, but you still used the old index number
that isn't valid anymore, this will result in a code bug. However, using slice type, your compiler will
ensure that the index number or particular information you retrieve about that String remains valid
before it is changed.

Slice Type

Slice type

let s = String::from("hello world");

let hello = &s[0..5];

let world = &s[6.11];

Why slice?

let mut s = String::from("hello world");

let word = first_word(&s); // get the reference to "hello" in s

s.clear(); // error, because we are using mutable reference here, but there is a immutable

reference existing!

println!("the first word is {}", word);

Thus using slice type will prevent any mutable changes from happening before the slice type gets
used.

The type of s here is &str , a slice that points to that string literal in binary. It is also immutable
because there is no mut modifier.

By making the parameter of a string from

Into to

We are able to take slices of String whether partial or whole, or on the entire reference, because
slice type are reference themselves.

We can also slice type string literal, because string literal themselves are also string slices you can
also pass them in directly, or you can slice them too.

String literals
let s = "hello world";

Using string slice as parameters

fn first_word(s: &String) -> &str

fn first_word(s: &str) -> &str

fn main() {

 let my_string = String::from("hello world");

 // `first_word` works on slices of `String`s, whether partial or whole

 let word = first_word(&my_string[0..6]);

 let word = first_word(&my_string[..]);

 // `first_word` also works on references to `String`s, which are equivalent

 // to whole slices of `String`s

 let word = first_word(&my_string);

 let my_string_literal = "hello world";

 // `first_word` works on slices of string literals, whether partial or whole

 let word = first_word(&my_string_literal[0..6]);

 let word = first_word(&my_string_literal[..]);

 // Because string literals *are* string slices already,

 // this works too, without the slice syntax!

 let word = first_word(my_string_literal);

}

Revision #1
Created 28 January 2023 17:47:18 by Tamarine
Updated 28 January 2023 19:24:31 by Tamarine

