
Struct allows you to compose different type of data together into one big object, just like structs in
C.

You will have to name each piece of data that you are using so that you can access them when you
instantiate a struct later.

Here is how to define a sample struct (Note you would write this outside of functions):

Then to instantiate a struct:

To access the fields that you have instantiated you would use the dot notation, user1.active,
user1.username, user1.email .

To make the struct mutable you would also attach the mut modifier to the variable. The entire
instance of struct must be mutable, Rust doesn't allow partial field mutability.

Using Structs to Structure
Related Data

Defining and instantiating structs

struct User {

	active: bool,

 username: String,

 email: String,

}

fn main() {

	let user1 = User {

 	active: true,

 username: String::from("Ricky"),

 email: String::from("irebo@gmail.com"),

	};

}

Field init shorthand

Say you have a function that builds your struct and return it as its return value depending on the
parameter you passed:

Writing it like this will get repetitive, especially if there are going to be lot of parameter, instead
you can use a shorthand, just ignore the key if the parameter that you passed into the function is
the same as the key name:

This is much more concise without the repetition.

Sometimes you might want to create a new instances from the old instances, changing some of the
old values but keep the rest the same.

You can do it the hard coded way like such:

fn build_user(email: String, username: String) -> User {

	User {

 	active: true,

 username: username,

 email: email,

	}

}

fn build_user(email: String, username: String) -> User {

 User {

 active: true,

 username,

 email,

 }

}

Creating instances from other instances with struct update syntax

fn main() {

	// created user1 here

 let user2 = User {

 	active: user1.active,

 username: user1.username,

 email: String::from("new email@gmail.com"),

	};

}

This works but you have to type out all of the fields that are repeated, a much shorter way to do
this is to use struct update syntax:

With this syntax, you only have to worry about writing the new value for the new instance, and
leave all of the old values to struct update syntax to handle.

..user1 must come last to specify that any remaining fields should be getting their values from the
corresponding fields in user1 .

You can also create a tuple struct, which is like struct but doesn't have names associated with their
fields, they only have type of the fields.

This is useful if you just want to give a simple tuple a name. And separate different type of tuple
from each other.

You can access the tuple using the same tuple syntax, tuple.<index number>

fn main() {

	// create user1 here

 let user2 = User {

 	email: String::from("new email here"),

 ..user1

	}

}

struct update syntax uses = like an assignment, so it will be moving data. After doing struct
update you can no longer use user1 as a whole after creating user2 since data like
username is moved to user2 and not copied!

Tuple struct

struct Color(i32, i32, i32);

struct Point(i32, i32, i32);

fn main() {

	let black = Color(0, 0, 0);

 let origin = Point(0, 0, 0);

}

Method syntax

Methods are like function but they are defined in the context of a struct, enum, or a trait object.

The first parameter of a method is always self, which represents the instance of the struct that the
method is called on.

To define function in the context of in this case a struct, you write the impl block for Rectangle .
Everything inside this impl block will be associated with the Rectangle type. Then you can write
the method itself, making sure that the first parameter is a reference to self .

Then you can call the method on the object.

The first parameter must be &self and is actually a shorthand for self: &Self , Self type itself is
an alias for the type that the impl block is for. This is so that we don't have to write rectangle:
&Rectangle instead.

Method can take ownership of self , borrow self immutable or mutably. In the example, it is just
borrowing self immutably since it is just reading data.

Defining methods

struct Rectangle {

	width: u32,

 height: u32,

}

impl Rectangle {

	fn area(&self) -> u32 {

 	self.width * self.height

	}

}

fn main() {

	let r1 = Rectangle {

 	width: 30,

 height: 50,

	};

 println!("The area is {}", r1.area());

}

Just for your information, no matter which self you do, taking ownership or do borrowing,
Rust will automatically add the appropriate &, &mut, or * for you automatically. This is so
that you can just focus on calling the method on the object without worrying about anything

Functions implemented with impl block are called assocaited functions because they are
connected to the type of struct they are defined. You are able to define associated functions that
don't have self as first parameter (hence they are no longer methods) they are reference to as
static or class methods. They are associated with the type rather than an instance.

Associated functions that don't have self are often used for constructors that return new instance
of the struct, just like String::from .

Then to call associated functions that doesn't take self as first parameter you use the :: syntax
with the struct name like such:

You can separate different methods into impl blocks, although there is really no reason to unless
for readability.

else

p1.ditance(&p2);

// vs

(&p1).distance(&p2);

Associated functions

impl Rectangle {

	fn square(size: u32) -> Self {

 	Self {

 	width: size,

 height: size,

		}

	}

}

Self in this case is an alias for the type that appears after the impl keyword, Rectangle in
this case.

let sq = Rectangle::square(3);

Multiple impl block

impl Rectangle {

 fn area(&self) -> u32 {

 self.width * self.height

 }

This is perfectly valid syntax.

}

impl Rectangle {

 fn can_hold(&self, other: &Rectangle) -> bool {

 self.width > other.width && self.height > other.height

 }

}

Revision #2
Created 28 January 2023 22:04:09 by Tamarine
Updated 29 January 2023 02:49:08 by Tamarine

