
Depending on the DBMS, the select statement can pack in it a lot of optional keywords. For
example: for MySQL

Select Statement

The Select Statement

SELECT

 [ALL | DISTINCT | DISTINCTROW]

 [HIGH_PRIORITY]

 [STRAIGHT_JOIN]

 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]

 [SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

 select_expr [, select_expr] ...

 [into_option]

 [FROM table_references

 [PARTITION partition_list]]

 [WHERE where_condition]

 [GROUP BY {col_name | expr | position}, ... [WITH ROLLUP]]

 [HAVING where_condition]

 [WINDOW window_name AS (window_spec)

 [, window_name AS (window_spec)] ...]

 [ORDER BY {col_name | expr | position}

 [ASC | DESC], ... [WITH ROLLUP]]

 [LIMIT {[offset,] row_count | row_count OFFSET offset}]

 [into_option]

 [FOR {UPDATE | SHARE}

 [OF tbl_name [, tbl_name] ...]

 [NOWAIT | SKIP LOCKED]

 | LOCK IN SHARE MODE]

 [into_option]

into_option: {

 INTO OUTFILE 'file_name'

 [CHARACTER SET charset_name]

 export_options

 | INTO DUMPFILE 'file_name'

I will only demonstrate a subset of those functionalities below.

With these aggregator functions, you would apply them to a specific column or across all columns
to find the specific aggregator value. For example, if you want to find the minimum value of a
specific column age you would do:

All the other functions, max, avg, count, and sum works similarily, except computing different
things.

Are there any differences between these two calling of the aggregator functions? Of course there
is.

count(*) or any literal value inside the parenthesis will count the number of rows in the table,
regardless whether or not there is a NULL value.

count(column name) on the other hand will only count the rows in the specified column while
excluding NULL value.

Group by clause in your select statement will allow you to carry out the aggregator function on the
specific column you are grouping the rows on. For example, if you have a class of students, and
have their gender on a separate column. If you want to find the average age of the male and
female students, you would group the rows of students by their gender, then apply the avg
aggregator function on their age column:

Your output may look like:

 | INTO var_name [, var_name] ...

}

Min, Max, Avg, Count, Sum

SELECT MIN(age) FROM person;

Count(*) vs Count(column name)

Group by

SELECT avg(age) from students GROUP BY gender;

+------+

| age |

+------+

| 64 |

Notice that you do not get to see which age is for which group, is the top one for Female or Male?
In order to show that information, you would need to select on the column that you have grouped
on:

Then your output will look much more informative:

Just like in Pandas where you can group by with multiple columns, you can do it as well in SQL.

The output you might get is the following:

Just keep in mind that you would have to select out the columns you group on in order to show
what you have grouped by in the output, otherwise it wouldn't be helpful information.

| 69 |

+------+

SELECT avg(age), gender from students GROUP BY gender;

+------+--------+

| age | gender |

+------+--------+

| 64 | M |

| 69 | F |

+------+--------+

Group by multiple columns

SELECT EmployeeID, ShipperID, COUNT(*)

FROM Orders

Group BY EmployeeID, ShipperID

Order BY ShipperID, Count(*) DESC

EmployeeID	ShipperID	COUNT(*)

4				1			12

1				1			8

2				1			7

3				1			7

6				1			7

Order by

This is basically the sorting for your output. The rows that you have gotten, after group by if any,
will sort base on the columns that you have specified.

Append the DESC keyword right after if you want your result to be in descending order, by default it
is ascending.

Revision #1
Created 1 June 2023 13:30:42 by Tamarine
Updated 3 June 2023 03:53:07 by Tamarine

